一类分数阶微分方程周期边值问题正解的存在性

一类分数阶微分方程周期边值问题正解的存在性

论文摘要

本文考虑一类分数阶微分方程周期边值问题正解的存在性.其中λ<0,μ>0,D0+αu是u(t)的Riemann-Liouville分数阶微分,f:(0,1]×[0,+∞)→0,+∞)为连续函数.本文的主要内容安排如下:第一节 预备知识.第二节 运用Krasnosel’skii不动点定理研究了分数阶微分方程周期边值问题正解的存在性.第三节 运用上下解方法和单调迭代方法研究了分数阶微分方程周期边值问题非负解的存在性.

论文目录

  • 摘要
  • Abstract
  • 前言
  • 第一节 预备知识
  • 第二节 一类分数阶微分方程周期边值问题正解的存在性
  •   2.1 引言
  •   2.2 预备知识
  •   2.3 主要结果
  • 第三节 一类分数阶微分方程周期边值问题非负解的存在性
  •   3.1 引言
  •   3.2 预备知识
  •   3.3 主要结果
  • 参考文献
  • 攻读硕士学位期间发表的论文
  • 致谢
  • 文章来源

    类型: 硕士论文

    作者: 李小龙

    导师: 高承华

    关键词: 分数阶微分方程,周期边值问题,正解的存在性,不动点定理,上下解方法,单调迭代方法,函数

    来源: 西北师范大学

    年度: 2019

    分类: 基础科学

    专业: 数学

    单位: 西北师范大学

    分类号: O175.8

    DOI: 10.27410/d.cnki.gxbfu.2019.000725

    总页数: 45

    文件大小: 1735K

    下载量: 13

    相关论文文献

    • [1].一类奇异二阶阻尼差分方程周期边值问题正解的存在性[J]. 山东大学学报(理学版) 2019(12)
    • [2].三阶周期边值问题的正解[J]. 甘肃科学学报 2020(03)
    • [3].一类四阶周期边值问题解的存在性与唯一性[J]. 山东大学学报(理学版) 2020(07)
    • [4].一类周期边值问题混合型解的存在性[J]. 佳木斯大学学报(自然科学版) 2017(06)
    • [5].非线性一阶周期边值问题解的分歧结构[J]. 四川师范大学学报(自然科学版) 2017(04)
    • [6].四阶周期边值问题解的单调迭代方法[J]. 数学教学研究 2008(01)
    • [7].含弯曲项的四阶周期边值问题的多解性[J]. 兰州理工大学学报 2018(04)
    • [8].带参数的一阶周期边值问题正解的存在性及多解性[J]. 山东大学学报(理学版) 2016(12)
    • [9].含分布Henstock-Kurzweil积分的一阶反周期边值问题[J]. 吉林大学学报(理学版) 2014(04)
    • [10].非线性六阶周期边值问题正解的存在性与多重性[J]. 陇东学院学报 2012(03)
    • [11].非线性二阶周期边值问题的正解(英文)[J]. 安徽大学学报(自然科学版) 2012(03)
    • [12].分数阶脉冲微分方程的反周期边值问题[J]. 衡阳师范学院学报 2012(06)
    • [13].分数阶微分方程反周期边值问题解的存在性[J]. 安徽大学学报(自然科学版) 2011(01)
    • [14].一类非线性周期边值问题在共振情况下解的存在性[J]. 福建师大福清分校学报 2011(05)
    • [15].四阶周期边值问题解的存在性与唯一性[J]. 甘肃科学学报 2010(03)
    • [16].分数微分方程反周期边值问题解的存在性[J]. 湘南学院学报 2010(05)
    • [17].一阶脉冲周期边值问题正解的存在性[J]. 应用泛函分析学报 2010(04)
    • [18].差分方程反周期边值问题[J]. 湖南第一师范学报 2009(06)
    • [19].单调迭代技巧处理一类二阶周期边值问题[J]. 曲阜师范大学学报(自然科学版) 2008(03)
    • [20].非线性项零点个数与二阶周期边值问题正解个数的关系[J]. 吉林大学学报(理学版) 2019(02)
    • [21].一次脉冲周期边值问题解的存在及收敛性[J]. 应用泛函分析学报 2017(04)
    • [22].非线性项变号情形下四阶周期边值问题解的存在性[J]. 郑州大学学报(理学版) 2011(01)
    • [23].一阶脉冲方程反周期边值问题的解[J]. 广东工业大学学报 2011(02)
    • [24].一类周期边值问题解的存在性及其奇异摄动[J]. 闽江学院学报 2010(02)
    • [25].三阶奇异周期边值问题的正解[J]. 科学技术与工程 2009(15)
    • [26].二阶非线性动态方程的周期边值问题解的存在性[J]. 广东工业大学学报 2008(02)
    • [27].带参数的一阶周期边值问题正解的全局结构[J]. 四川大学学报(自然科学版) 2019(03)
    • [28].一类三阶非线性微分方程周期边值问题解的存在性[J]. 四川大学学报(自然科学版) 2019(05)
    • [29].二阶脉冲时滞积分微分方程反周期边值问题(英文)[J]. 华中师范大学学报(自然科学版) 2018(03)
    • [30].一类脉冲分数阶微分方程广义反周期边值问题解的存在性(英文)[J]. 应用数学 2017(01)

    标签:;  ;  ;  ;  ;  ;  ;  

    一类分数阶微分方程周期边值问题正解的存在性
    下载Doc文档

    猜你喜欢