论文摘要
由于受到云雾的影响,可见光影像能够高效用于绿潮检测的数据源较为有限,特别是云覆盖较为严重的可见光影像,基本无法用于检测绿潮。即使影像数据是在薄云、薄雾、无云覆盖的情况下获取的,由于其光谱反射值存在较大差异,依然很难采用同一阈值进行绿潮检测。基于此,为了提高可见光影像的利用率,实现不同云覆盖情况下,绿潮的高精度自适应阈值的自动检测,本文以GF-1影像为数据源,首先采用K-means聚类和C4.5决策树方法实现影像云覆盖情况的自动识别;其次,选取大量不同云覆盖情况下子图像样本(每个子图像样本中均包含绿潮和海水两类),分析得出不同云覆盖情况下绿潮和海水的区分阈值y与影像光谱差x=bandnir-bandred之间所具有的线性关系;然后,利用分析得出的线性关系提出一种适用于GF-1影像的绿潮分区自适应阈值自动检测方法。最后,为验证提出方法的有效性,分别采用NDVI方法、EVI方法和本文提出的自适应阈值自动检测方法进行绿潮提取实验。实验结果表明,对于GF-1卫星遥感数据,本文提出的绿潮自适应阈值分区自动检测方法明显优于传统的NDVI和EVI检测方法,不仅提高了绿潮的监测精度,而且实现了绿潮提取的全自动化。
论文目录
文章来源
类型: 期刊论文
作者: 王蕊,王常颖,李劲华
关键词: 绿潮,算法,决策树算法,自适应阈值
来源: 海洋学报 2019年04期
年度: 2019
分类: 基础科学,工程科技Ⅱ辑,信息科技
专业: 工业通用技术及设备,自动化技术
单位: 青岛大学数据科学与软件工程学院
基金: 国家自然科学青年基金(41506198),国家自然科学面上基金(41476101),全国统计科学研究项目(2017LY14)
分类号: TP751
页码: 131-144
总页数: 14
文件大小: 9392K
下载量: 213