采用MPSO优化SVR的短时交通流预测方法

采用MPSO优化SVR的短时交通流预测方法

论文摘要

为了提高高速公路交通流量预测精度以及预测方法的稳定性,降低预测用时,提出了一种后期随机惯性权重粒子群算法与支持向量回归机相结合的短时交通流预测模型(MPSO-SVR)。该预测模型用均匀分布的随机惯性权重替代标准PSO算法中不变的惯性权重ω,使算法中粒子在搜索后期拥有较大的ω,从而有效地避免算法陷入局部最优解,加快了算法的寻优速度。最后,通过不断更新惯性权重来更新粒子的速度与位置。算法不仅对支持向量回归中的惩罚因子c和核函数参数g进行寻优,而且能很好地平衡算法全局搜索与局部搜索能力,提高了算法的性能。实验结果表明,MPSO-SVR方法在沪宁高速交通流数据中比PSO-SVR方法预测精度更高、稳定性更强、耗时更短,且均方误差和平均百分比误差分别降低到28.689和12.952%。

论文目录

  • 1 概 述
  • 2 SVR模型原理
  • 3 基于MPSO-SVR的交通流预测模型
  •   3.1 标准PSO算法
  •   3.2 基于MPSO-SVR的交通流预测模型
  • 4 实验分析
  •   4.1 数据来源及预处理
  •   4.2 参数选择
  •   4.3 预测结果及精度分析
  • 5 结束语
  • 文章来源

    类型: 期刊论文

    作者: 晏雨婵,武奇生,白璘,席维

    关键词: 交通流量预测,线性递减惯性权重,粒子群算法,支持向量回归,参数寻优

    来源: 计算机技术与发展 2019年04期

    年度: 2019

    分类: 信息科技,工程科技Ⅱ辑

    专业: 公路与水路运输,自动化技术

    单位: 长安大学电子与控制学院

    基金: 教育部中央高校基本科研经费计划(310832173701),河南省交通运输厅科技项目(2019G-2-5)

    分类号: TP18;U491.1

    页码: 133-138

    总页数: 6

    文件大小: 2176K

    下载量: 196

    相关论文文献

    • [1].基于GA-BP神经网络的交叉口短时交通流预测研究[J]. 科技风 2020(11)
    • [2].智能交通系统中短时交通流预测模型的研究[J]. 现代计算机 2020(16)
    • [3].暴雨天气下高速公路短时交通流预测[J]. 计算机工程 2020(06)
    • [4].基于状态频率记忆神经网络的短时交通流预测[J]. 武汉理工大学学报(交通科学与工程版) 2020(04)
    • [5].基于检测器优化选择的短时交通流预测[J]. 计算机工程与应用 2017(08)
    • [6].基于统计的我国短时交通流预测模型分析[J]. 现代计算机(专业版) 2017(17)
    • [7].基于模糊神经网络的短时交通流预测方法研究[J]. 计算机测量与控制 2017(08)
    • [8].基于多条件随机场的短时交通流预测模型[J]. 计算机工程与设计 2017(10)
    • [9].基于流形距离的高速公路短时交通流预测模型[J]. 科学技术与工程 2020(18)
    • [10].交通事故下高速公路短时交通流预测[J]. 东莞理工学院学报 2020(05)
    • [11].基于深度学习的短时交通流预测模型[J]. 交通科学与工程 2020(03)
    • [12].短时交通流预测模型综述[J]. 都市快轨交通 2019(04)
    • [13].改进支持向量回归机的短时交通流预测[J]. 交通运输系统工程与信息 2019(04)
    • [14].一种平稳化短时交通流预测方法[J]. 测控技术 2018(02)
    • [15].基于深度学习的短时交通流预测[J]. 计算机应用研究 2017(01)
    • [16].布谷鸟算法优化小波神经网络的短时交通流预测[J]. 计算机应用与软件 2017(03)
    • [17].基于混沌时间序列局域法的短时交通流预测[J]. 计算机技术与发展 2015(01)
    • [18].基于模式识别的短时交通流预测[J]. 公路 2011(09)
    • [19].数据融合技术在短时交通流预测中的应用[J]. 交通科技 2010(S1)
    • [20].短时交通流预测系统的效率优化研究[J]. 交通信息与安全 2010(04)
    • [21].基于加权组合模型的短时交通流预测研究[J]. 测控技术 2018(05)
    • [22].基于轨迹数据的短时交通流预测[J]. 数码世界 2020(05)
    • [23].基于非参数回归的短时交通流预测研究综述[J]. 交通运输工程与信息学报 2008(04)
    • [24].基于K近邻算法和支持向量回归组合的短时交通流预测[J]. 公路交通科技 2017(05)
    • [25].最小最大概率回归机在短时交通流预测中的应用[J]. 公路交通科技 2014(02)
    • [26].综合运输体系的短时交通流预测方法[J]. 交通建设与管理 2014(06)
    • [27].短时交通流预测研究[J]. 华东公路 2011(03)
    • [28].非参数回归方法在短时交通流预测中的应用[J]. 清华大学学报(自然科学版) 2009(09)
    • [29].短时交通流预测中的特征选择算法研究[J]. 交通运输系统工程与信息 2019(02)
    • [30].基于多源交通数据融合的短时交通流预测[J]. 重庆交通大学学报(自然科学版) 2019(05)

    标签:;  ;  ;  ;  ;  

    采用MPSO优化SVR的短时交通流预测方法
    下载Doc文档

    猜你喜欢