基于树木激光点云的有效特征抽取与识别方法

基于树木激光点云的有效特征抽取与识别方法

论文摘要

采用地面激光扫描获取树木的光探测和测距数据,并将其作为遥感数据源,选取水杉、棕榈、无患子、竹子和橡胶树为研究对象,提出了三类有效特征:树木相对聚类特征、点云分布特征和树木表观特征,列举了68个特征参数。采用支持向量机在交叉验证中对训练数据集进行检验计算,确定最优的特征参数组,最终在测试数据集中进行树种分类。研究结果表明:基于树木相对聚类特征的最优特征参数组进行树种分类的平均分类精度较低(45%);基于点云分布特征的最优特征参数组进行树种分类的平均分类精度有所增加(58.8%);基于树木表观特征的最优特征参数组进行树种分类的平均分类精度较高(63.8%);基于三类特征的13个最优特征参数进行树种分类的平均分类精度最高(87.5%)。此外,由于水杉与其他树种形态差异较为明显,在分类中表现突出,错判率最低(6.5%)。所提方法具有较高的可行性,为获得更准确的森林树种分布提供了强有力的工具。

论文目录

  • 1 引 言
  • 2 研究区概况及数据预处理
  •   2.1 研究区概况
  •   2.2 数据获取
  •   2.3 数据预处理
  • 3 方法介绍
  •   3.1 方法框架
  •   3.2 树木相对聚类特征
  •   3.3 点云分布特征
  •   3.4 树木表观特征
  •   3.5 分类方法
  • 4 结果与分析
  •   4.1 基于树木相对聚类特征的树种分类
  •   4.2 基于点云分布特征的树种分类
  •   4.3 基于树木表观特征的树种分类
  •   4.4 基于整合3个类别最优特征参数组的树种分类
  • 5 结 论
  • 文章来源

    类型: 期刊论文

    作者: 卢晓艺,云挺,薛联凤,徐强法,曹林

    关键词: 遥感,激光雷达,树种识别,支持向量机,交叉验证,组合特征参数

    来源: 中国激光 2019年05期

    年度: 2019

    分类: 基础科学,农业科技,信息科技

    专业: 物理学,林业,无线电电子学,计算机软件及计算机应用

    单位: 南京林业大学信息科学技术学院,南京林业大学南方现代林业协同创新中心

    基金: 国家重点研发计划(2017YFD0600900),国家自然科学基金项目(31770591),中国博士后面上基金(2016M601823)

    分类号: TP391.41;S771.8;TN249

    页码: 411-422

    总页数: 12

    文件大小: 3279K

    下载量: 404

    相关论文文献

    • [1].基于卷积神经网络的非等效点云分割方法[J]. 东华大学学报(自然科学版) 2019(06)
    • [2].点云智能研究进展与趋势[J]. 测绘学报 2019(12)
    • [3].基于深度学习的点云分割方法综述[J]. 计算机工程与应用 2020(01)
    • [4].点云数据预处理研究[J]. 现代信息科技 2020(02)
    • [5].基于地基激光雷达点云的植被表型特征测量[J]. 生态学杂志 2020(01)
    • [6].机载点云空洞的修复方法[J]. 北京测绘 2020(02)
    • [7].基于深度学习的零件点云分割算法研究[J]. 机电工程 2020(03)
    • [8].基于深度学习的点云语义分割综述[J]. 激光与光电子学进展 2020(04)
    • [9].基于神经网络的航空行李点云检测方法研究[J]. 电子世界 2020(07)
    • [10].基于二维截面筛选标记的点云简化方法研究[J]. 机电工程 2020(05)
    • [11].三维点云补全方法的现状和发展趋势[J]. 信息记录材料 2020(05)
    • [12].新型激光远程点云装置研究[J]. 机电信息 2020(17)
    • [13].一种简化的输电线路点云电塔自动定位方法[J]. 北京建筑大学学报 2020(03)
    • [14].一种改进的区域增长彩色3D点云分割算法[J]. 国外电子测量技术 2018(11)
    • [15].面向反光工件点云缺陷的点云增强算法[J]. 计算机辅助设计与图形学学报 2019(07)
    • [16].一种基于高度差异的点云数据分类方法[J]. 测绘通报 2018(06)
    • [17].手提激光盘煤仪点云去噪[J]. 激光杂志 2017(05)
    • [18].面向室内场景点云的对象重建[J]. 测绘通报 2017(06)
    • [19].快速点云定向数学模型实际精度分析[J]. 北京测绘 2017(04)
    • [20].基于点云几何约束的仿真安装探讨[J]. 地理空间信息 2017(09)
    • [21].基于自适应切片的点云压缩算法[J]. 工程勘察 2017(09)
    • [22].序列图像三维重构中点云精简算法的研究与改进[J]. 计算机工程与应用 2016(08)
    • [23].地面三维激光扫描点云重建技术研究[J]. 数码世界 2017(08)
    • [24].三维环境下交互式点云对象提取方法[J]. 计算机工程与应用 2019(24)
    • [25].换流站激光点云密度对土石方计算的影响[J]. 电力勘测设计 2020(01)
    • [26].融合个体识别的3D点云语义分割方法研究[J]. 黑龙江工业学院学报(综合版) 2019(12)
    • [27].机载激光点云与摄影测量点云非监督建筑物变化检测[J]. 测绘科学技术学报 2019(05)
    • [28].电力巡检点云分布式异构处理的研究[J]. 湖北电力 2019(05)
    • [29].点云重建的并行算法[J]. 计算机工程与应用 2020(06)
    • [30].基于深度学习的点云匹配[J]. 计算机工程与设计 2020(06)

    标签:;  ;  ;  ;  ;  ;  

    基于树木激光点云的有效特征抽取与识别方法
    下载Doc文档

    猜你喜欢