论文摘要
高精度方法在多种网格单元上的推进是一个难点。提出了一种基于高精度谱差分格式(SD)的三维混合网格求解方法,用于求解三棱柱/四面体混合网格。通过一阶h-加密方法对混合网格进行加密,生成一套六面体网格,并保证网格在边界处的高阶精度。将设计于六面体单元上的SD格式应用于加密后的非结构网格。通过计算Euler Vortex流动以及Taylor-Couette流动,验证了求解器对于无黏和有黏流动的高精度特性;通过定常球体绕流数值模拟以及非定常三维圆柱绕流数值模拟,与现有文献结果进行对比,验证了方法的有效性。
论文目录
文章来源
类型: 期刊论文
作者: 邱滋华,徐敏,ZHANG Bin,LIANG Chunlei
关键词: 计算流体力学,谱差分方法,曲面边界条件,非结构网格,混合网格
来源: 西北工业大学学报 2019年05期
年度: 2019
分类: 工程科技Ⅱ辑,基础科学
专业: 数学
单位: 西北工业大学航天学院,乔治华盛顿大学机械与航空工程系
基金: 国家自然科学基金(11802179)资助
分类号: O241.82
页码: 968-976
总页数: 9
文件大小: 1843K
下载量: 27
相关论文文献
- [1].一种混合优化差分格式[J]. 气体物理 2019(06)
- [2].General Improved KdV方程的三层加权平均线性差分格式[J]. 四川大学学报(自然科学版) 2017(01)
- [3].三维对流扩散方程的Du Fort-Frankel差分格式[J]. 保山学院学报 2015(02)
- [4].色散方程的两类高效率差分格式[J]. 湖北民族学院学报(自然科学版) 2013(04)
- [5].一类扩散方程差分格式的稳定性分析[J]. 中国科技信息 2011(07)
- [6].关于差分格式的稳定性讨论[J]. 网络财富 2009(23)
- [7].四阶抛物型方程的一个高精度差分格式[J]. 新乡学院学报(自然科学版) 2008(03)
- [8].解对流方程的一个双参数显示差分格式[J]. 新疆师范大学学报(自然科学版) 2008(02)
- [9].奇异摄动问题在修正的Bakhvalov-Shishkin网格上的混合差分格式[J]. 浙江大学学报(理学版) 2020(04)
- [10].美式期权定价的指数型差分格式分析[J]. 西南师范大学学报(自然科学版) 2014(08)
- [11].求解对流扩散方程的一个高精度恒稳定的新型差分格式[J]. 天水师范学院学报 2011(02)
- [12].一维非定常对流扩散方程的2m阶指数型高精度差分格式[J]. 淮北师范大学学报(自然科学版) 2011(04)
- [13].美式期权定价的四阶指数型差分格式分析[J]. 兰州文理学院学报(自然科学版) 2016(06)
- [14].二维非饱和水流的全离散广义差分格式分析及其数值模拟[J]. 系统科学与数学 2010(09)
- [15].求解二维Hamilton-Jacobi方程的一类无波动的耗散差分格式[J]. 南昌航空大学学报(自然科学版) 2009(03)
- [16].高阶抛物型偏微分方程的一个高精度差分格式[J]. 新乡学院学报(自然科学版) 2008(04)
- [17].基于不均匀网格的分数阶微分方程差分格式及系数性质[J]. 吕梁学院学报 2017(02)
- [18].一种新的混合差分格式的构造[J]. 哈尔滨师范大学自然科学学报 2015(06)
- [19].热传导方程三层并行差分格式初始条件的计算[J]. 计算物理 2011(04)
- [20].一维磁流体方程的非交错无振荡中心差分格式[J]. 南昌航空大学学报(自然科学版) 2010(03)
- [21].抛物型方程的一种高阶并行差分格式[J]. 山东大学学报(理学版) 2009(02)
- [22].结合矢通分裂的差分格式[J]. 郑州大学学报(理学版) 2008(02)
- [23].Black-scholes期权定价公式的显式差分近似[J]. 山西大同大学学报(自然科学版) 2020(05)
- [24].Benjamin-Bona-Mahony方程的一个高精度线性差分格式[J]. 四川大学学报(自然科学版) 2019(05)
- [25].高维热流耦合方程的一种交替差分格式[J]. 江西科学 2017(01)
- [26].变系数热传导方程的两层绝对稳定差分格式[J]. 新乡学院学报(自然科学版) 2009(01)
- [27].多时间层次差分格式[J]. 扬州大学学报(自然科学版) 2009(01)
- [28].对流方程的六阶中心差分格式[J]. 辽宁师范大学学报(自然科学版) 2009(02)
- [29].Rosenau-Burgers方程的一种新的二阶线性差分格式[J]. 河北师范大学学报(自然科学版) 2012(06)
- [30].一类时滞抛物型方程的差分格式[J]. 延边大学学报(自然科学版) 2011(04)