基于AERONET数据估算近地面PM2.5

基于AERONET数据估算近地面PM2.5

论文摘要

近年来对PM2.5估算的研究大多是从卫星遥感的气溶胶光学厚度出发,而从气溶胶粒子谱本身出发的研究较少.基于此,本文提出一种新方法,利用2016—2017年AERONRT北京、香河、徐州和太湖4个站点的气溶胶粒径分布数据估算了近地面PM2.5质量浓度,经标高订正和湿度订正后用地面监测数据对估算结果进行评价检验.结果表明:①估算的2016—2017年PM2.5日均值和地面实测数据的拟合度R2分别为北京0.42、香河0.31、徐州0.05和太湖0.49,经标高订正和湿度订正后分别提升至0.69(RMSE=39.33μg·cm-3)、0.79(RMSE=35.36μg·cm-3)、0.49(RMSE=32.93μg·cm-3)和0.75(RMSE=15.24μg·cm-3);②将估算的PM2.5季均值与地面实测季均值进行对比分析,结果也显示二者基本相当,同时基于该方法估算了2006—2017年北京和香河地区PM2.5年均值,分析了其变化趋势.由此可见,基于AERONET的粒子谱数据能够较好地估算近地面PM2.5质量浓度,并且可以利用该方法估算PM2.5历史数据,分析变化趋势.

论文目录

  • 1 引言 (Introduction)
  • 2 数据来源与研究方法 (Data sources and methods)
  •   2.1 研究区概况
  •   2.2 PM2.5监测数据和气象数据
  •   2.3 气溶胶数据
  •   2.4 数据匹配
  •   2.5 研究方法
  • 3 结果与分析 (Results and analysis)
  • 4 结论 (Conclusions)
  • 文章来源

    类型: 期刊论文

    作者: 许文龙,胡方超,王雨轩

    关键词: 大气光学,气溶胶粒径分布,浓度

    来源: 环境科学学报 2019年06期

    年度: 2019

    分类: 工程科技Ⅰ辑

    专业: 环境科学与资源利用

    单位: 南京信息工程大学大气物理学院,中国气象局气溶胶与云降水重点开放实验室

    基金: 国家重点研发计划(No.2018YFC1506502),国家自然科学基金(No.40975019)

    分类号: X513

    DOI: 10.13671/j.hjkxxb.2019.0098

    页码: 1902-1912

    总页数: 11

    文件大小: 3046K

    下载量: 181

    相关论文文献

    • [1].中国西北干旱半干旱区气溶胶分类及特征[J]. 中国沙漠 2019(05)
    • [2].利用地基太阳光度计分类识别气溶胶类型[J]. 环境科学与技术 2019(S1)
    • [3].气溶胶的影响[J]. 农家参谋 2018(03)
    • [4].河北秋季气溶胶粒子垂直分布的飞机探测分析[J]. 气象与环境科学 2016(04)
    • [5].用气溶胶飞行时间质谱仪测量气溶胶粒子折射率[J]. 大气与环境光学学报 2017(05)
    • [6].气溶胶滤膜标准γ源制备[J]. 中国原子能科学研究院年报 2016(00)
    • [7].石家庄市市民对于雾霾的认知与防范[J]. 农村科学实验 2017(07)
    • [8].重庆市区冬季气溶胶粒子的物理特征观测[J]. 环境影响评价 2019(02)
    • [9].典型类型气溶胶散射特性的计算分析[J]. 大气与环境光学学报 2018(04)
    • [10].大气气溶胶粒子散射相函数的数值计算[J]. 红外与激光工程 2012(03)
    • [11].复合气溶胶粒子光学特性的数值计算[J]. 原子与分子物理学报 2012(06)
    • [12].气溶胶对天空光偏振分布的影响[J]. 光学学报 2019(06)
    • [13].华北重度霾过程期间大气气溶胶粒子的微物理垂直特征[J]. 科学技术与工程 2018(02)
    • [14].南京北郊重金属气溶胶粒子来源分析[J]. 环境科学 2016(12)
    • [15].气溶胶粒子散射和吸收特性对复折射率依赖性的数值研究[J]. 光散射学报 2017(02)
    • [16].气溶胶粒子让地球正在变暗[J]. 工业安全与环保 2011(09)
    • [17].微米级气溶胶粒子在滤层中的收集效率研究[J]. 过程工程学报 2009(S1)
    • [18].球形气溶胶粒子对激光散射退偏特性的研究[J]. 红外与激光工程 2008(S3)
    • [19].新疆某铍厂工作场所气溶胶浓度与粒径的测量与分析[J]. 环境卫生学杂志 2019(01)
    • [20].基于地基遥感的杭州地区气溶胶光学特性[J]. 环境科学 2019(04)
    • [21].南京北郊秋冬季气溶胶散射特性研究[J]. 生态环境学报 2019(03)
    • [22].黄土高原半干旱区典型日吸收性气溶胶综合观测分析[J]. 大气科学 2018(02)
    • [23].华北典型污染地区多轴差分吸收光谱技术的气溶胶反演研究[J]. 地球物理学报 2018(02)
    • [24].某戈壁区域地表气溶胶粒度特性研究[J]. 环境科学与技术 2017(S2)
    • [25].大气中二次无机气溶胶的形成反应和清除方法[J]. 无机盐工业 2018(10)
    • [26].红外波段气溶胶粒子光学特性的数值计算[J]. 红外与激光工程 2012(06)
    • [27].内混合气溶胶粒子体系有效吸收系数的计算[J]. 强激光与粒子束 2012(11)
    • [28].沙尘和霾气溶胶的物理特征比较[J]. 气象科技 2018(06)
    • [29].陆地气溶胶粒子尺度分布的准确描述[J]. 中国环境科学 2019(11)
    • [30].成都夏季气溶胶消光特性研究[J]. 高原山地气象研究 2018(03)

    标签:;  ;  ;  

    基于AERONET数据估算近地面PM2.5
    下载Doc文档

    猜你喜欢