论文摘要
研究了在一类特殊的、同时具有保守性和耗散性的三维自治动力学系统中隐藏多吸引子的共存现象.随着控制参数的变化,系统的平衡点从无平衡点演变为非零平衡点进而再演变为无平衡点,或者从非零平衡点演变为无平衡点.定性探讨了系统平衡点的演化与稳定性分布,并采用分岔图、李雅普诺夫指数谱和相轨图等动力学方法,开展了不同初始条件下随控制参数变化的分岔分析.设计并制作了硬件电路,实验结果验证了共存多吸引子的真实性.
论文目录
文章来源
类型: 期刊论文
作者: 徐强,杨晓云,罗姣燕,徐权
关键词: 平衡点,隐藏多吸引子,保守性,耗散性
来源: 华中师范大学学报(自然科学版) 2019年01期
年度: 2019
分类: 基础科学
专业: 力学
单位: 常州工学院计算机信息工程学院,常州大学信息科学与工程学院
基金: 国家自然科学基金项目(61801054,51607013,61601062),江苏省自然科学基金项目(BK20160282)
分类号: O313
DOI: 10.19603/j.cnki.1000-1190.2019.01.007
页码: 38-43+49
总页数: 7
文件大小: 444K
下载量: 120
相关论文文献
- [1].非自治基尔霍夫型吊桥方程拉回吸引子的存在性[J]. 兰州文理学院学报(自然科学版) 2020(01)
- [2].带加性噪声和线性记忆的可拉伸吊桥方程的随机吸引子[J]. 吉林大学学报(理学版) 2020(02)
- [3].具有多种吸引子共存类型的新型四维混沌系统[J]. 华南理工大学学报(自然科学版) 2020(03)
- [4].一类具有非线性kirchhoff-sine-Gordon广义方程的整体吸引子的存在性[J]. 数学的实践与认识 2020(08)
- [5].金兹堡-朗道方程组的整体吸引子[J]. 闽南师范大学学报(自然科学版) 2020(02)
- [6].可拉伸梁方程一致紧吸引子的存在性[J]. 汕头大学学报(自然科学版) 2016(04)
- [7].非线性可拉伸梁方程的指数吸引子[J]. 吉林大学学报(理学版) 2017(04)
- [8].耦合吊桥方程指数吸引子的存在性[J]. 西南大学学报(自然科学版) 2017(09)
- [9].非自治Kuramoto-Sivashinsky方程一致吸引子的存在性、一致有界性和收敛性[J]. 华中师范大学学报(自然科学版) 2016(02)
- [10].非线性梁方程的渐近吸引子[J]. 数学的实践与认识 2015(02)
- [11].带有导数项的反应扩散方程指数吸引子存在性的一个注解[J]. 兰州文理学院学报(自然科学版) 2015(06)
- [12].具有乘法白噪音的Kuramoto-Sivashinsky方程在奇解子空间上的随机吸引子[J]. 课程教育研究 2017(31)
- [13].非线性可拉伸梁方程非自治指数吸引子的存在性[J]. 云南民族大学学报(自然科学版) 2013(05)
- [14].一类Van der Pol-Duffing振子的隐藏吸引子[J]. 重庆师范大学学报(自然科学版) 2019(05)
- [15].具有强阻尼的基尔霍夫型吊桥方程拉回吸引子的存在性[J]. 河南大学学报(自然科学版) 2017(02)
- [16].可拉伸梁方程一致吸引子的存在性[J]. 陇东学院学报 2016(05)
- [17].非自治吊桥方程的拉回吸引子(英文)[J]. 四川大学学报(自然科学版) 2015(02)
- [18].非自治反应扩散方程的拉回D-吸引子[J]. 江南大学学报(自然科学版) 2014(02)
- [19].(2+1)维长短波方程整体吸引子的存在性[J]. 鲁东大学学报(自然科学版) 2013(01)
- [20].Kuramoto-Sivashinsky方程的指数吸引子[J]. 西南大学学报(自然科学版) 2011(09)
- [21].梁方程的指数吸引子[J]. 西南大学学报(自然科学版) 2011(09)
- [22].无界域上非自治随机强阻尼波动方程的一致随机吸引子的存在性[J]. 河北师范大学学报(自然科学版) 2020(01)
- [23].一类具有吸引子共存新混沌系统的动力学分析、电路仿真及应用[J]. 曲阜师范大学学报(自然科学版) 2017(03)
- [24].一个新的混沌系统及其共存吸引子的研究[J]. 杭州电子科技大学学报(自然科学版) 2017(04)
- [25].梁方程的一致紧吸引子[J]. 郑州大学学报(理学版) 2016(01)
- [26].非线性梁方程的一致吸引子[J]. 贵州师范大学学报(自然科学版) 2014(05)
- [27].非线性抛物方程的指数吸引子[J]. 重庆理工大学学报(自然科学) 2013(01)
- [28].带可乘白噪音的广义Kuramoto-Sivashinsky方程的随机吸引子[J]. 西南师范大学学报(自然科学版) 2012(10)
- [29].非线性可拉伸梁方程的拉回D-吸引子[J]. 西南大学学报(自然科学版) 2011(03)
- [30].随机时滞FitzHugh-Nagumo格点系统随机吸引子的存在性[J]. 吉林大学学报(理学版) 2011(02)