导读:本文包含了向量值测度论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:量值,定理,算子,空间,函数,积分,拓扑。
向量值测度论文文献综述
施慧华[1](2013)在《向量值测度的泛函表示》一文中研究指出给定有限测度空间(Ω,A,μ),令MX(A)=span{∑ni=1=χAixi,Ai∈A,xi∈X,n∈N}L∞(μ,X).证明了(Ω,A)上的向量值有限可加测度m是可列可加的当且仅当其对应泛函U是w*-序列连续的,对应关系由U(x)=∫Ωdm(x∈MX(A))确定.并借助于向量值测度的Yosida-Hewitt分解定理,进一步证明了任一定义于MX(A)上的连续线性泛函均能唯一分解成w*序列连续泛函与纯连续泛函的l和.(本文来源于《厦门大学学报(自然科学版)》期刊2013年03期)
林一星[2](2010)在《向量值测度产生的集值测度及性质》一文中研究指出由有界变差向量值测度的值域,通过取凸包和闭包,构造了L[0,1],L2[0,1]和C[0,1]空间上的有界变差紧凸集值测度,结果由欧氏空间推广到函数空间.(本文来源于《纯粹数学与应用数学》期刊2010年05期)
邓起荣[3](2008)在《向量值不变测度的存在性》一文中研究指出对于任意的迭代函数系和一组非负加权矩阵,证明了向量值不变测度的存在唯一性定理,并对向量值不变测度的特性作了简要的讨论.(本文来源于《福建师范大学学报(自然科学版)》期刊2008年01期)
邸继征[4](2001)在《多元向量值测度(英文)》一文中研究指出在本系列论文中 ,研究了相应于多重线性映射的强测度论 ;引入基于该测度论的强多重线性积分系统 ;建立了基于弱测度论的弱积分理论 ,这些结果属于多元向量值测度论的范畴 ,其积分模型几乎包含了所有现今广泛应用的积分 .(本文来源于《数学研究》期刊2001年04期)
于宗义[5](1997)在《向量值测度意义下的Egoroff定理》一文中研究指出给出了向量值测度的极限性质,把Egorof定理推广到向量值测度的情形.(本文来源于《山东师大学报(自然科学版)》期刊1997年03期)
王立冬,张志田[6](1997)在《无穷测度集上向量值函数的近一致强收敛定理》一文中研究指出本文对无穷测度集上的向量值函数列进行了讨论,得到了关于向量值函数列近一致强收敛的几个结果。(本文来源于《枣庄师专学报》期刊1997年03期)
林一星[7](1996)在《几种向量值测度及其性质》一文中研究指出本文利用拟连续测度空间,构造了几种向量值测度,并且讨论了它们的性质.(本文来源于《数学研究与评论》期刊1996年04期)
田国辉,李晓峰,赵天霞[8](1996)在《向量值测度与条件期望算子》一文中研究指出在文献〔1〕的基础上,将条件期望算子的定义推广到向量值函数空间上,并讨论了它的一些性质(本文来源于《吉林工业大学学报》期刊1996年03期)
郑喜印[9](1991)在《紧空间上的正则向量值测度》一文中研究指出J.Diestel和J.J.Uhl,Jr在他们的专着《Vector Measures》一书的第六章讨论了向量测度与C(Ω)上有界线性算子的关系。我们利用其中的一些结果得到紧空间上一类正则向量测度通过数值测度表示的定理。设Ω是紧Hausdorff空间,∑是Ω的所有Borel集构成的σ-代数,X是Banach空间,G:∑→X称为Ω上的正则X-值测度,若(i)当(本文来源于《数学季刊》期刊1991年04期)
邵惠伯[10](1991)在《向量值测度及广义Bochner积分的几个性质》一文中研究指出本文证明了向量测度共鸣定理,并讨论了广义 Bochner 积分的几个性质。(本文来源于《河北大学学报(自然科学版)》期刊1991年03期)
向量值测度论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
由有界变差向量值测度的值域,通过取凸包和闭包,构造了L[0,1],L2[0,1]和C[0,1]空间上的有界变差紧凸集值测度,结果由欧氏空间推广到函数空间.
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
向量值测度论文参考文献
[1].施慧华.向量值测度的泛函表示[J].厦门大学学报(自然科学版).2013
[2].林一星.向量值测度产生的集值测度及性质[J].纯粹数学与应用数学.2010
[3].邓起荣.向量值不变测度的存在性[J].福建师范大学学报(自然科学版).2008
[4].邸继征.多元向量值测度(英文)[J].数学研究.2001
[5].于宗义.向量值测度意义下的Egoroff定理[J].山东师大学报(自然科学版).1997
[6].王立冬,张志田.无穷测度集上向量值函数的近一致强收敛定理[J].枣庄师专学报.1997
[7].林一星.几种向量值测度及其性质[J].数学研究与评论.1996
[8].田国辉,李晓峰,赵天霞.向量值测度与条件期望算子[J].吉林工业大学学报.1996
[9].郑喜印.紧空间上的正则向量值测度[J].数学季刊.1991
[10].邵惠伯.向量值测度及广义Bochner积分的几个性质[J].河北大学学报(自然科学版).1991