论文摘要
用户异常用电行为的检测是电力公司需要重点解决的问题。目前异常用电检测通常采用数据分析的方法,主要包括聚类和分类两种,在处理固定数据集时校测准确率和效率均较高。但是此类方法在处理增量数据时,每次数据增量更新时均需要将增量数据与原始数据合并后重新建模才能获得新的检测模型,而用户的用电数据是频繁更新的且最新的数据更能体现出用户的用电习惯,因此在异常用电行为检测时必须考虑增量数据,而现有检测方法在进行增量式异常用电行为检测时效率很低。为解决数据增量式更新的情况下异常用电行为检测方法性能低下的问题,提出了一种基于逻辑回归的增量式异常用电行为检测方法,仅需对增量数据进行建模即可得到面向全局数据集的检测模型,无需对全局数据进行重新建模,提高检测算法的执行效率。当用户电量数据产生增量时,仅需对增量数据构建检测模型,再与原始数据的检测模型相结合,即可得到基于全部数据的检测模型。实验结果表明,该方法在保证检测结果准确性的同时,极大地提高了算法执行效率,且对计算和存储资源的需求较低。
论文目录
文章来源
类型: 期刊论文
作者: 张小秋,周超,徐晴
关键词: 逻辑回归,异常检测,增量式检测,用电行为
来源: 科学技术与工程 2019年29期
年度: 2019
分类: 工程科技Ⅱ辑,信息科技
专业: 电力工业,自动化技术
单位: 国网江苏省电力有限公司电力科学研究院,南京新联电子股份有限公司,国家电网公司电能计量重点实验室
基金: 国家电网公司科技项目(5210EF18000G)资助
分类号: TM764
页码: 144-149
总页数: 6
文件大小: 1091K
下载量: 178