掺杂类金刚石薄膜论文_崔丽,孙丽丽,郭鹏,柯培玲,汪爱英

导读:本文包含了掺杂类金刚石薄膜论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:金刚石,薄膜,摩擦,金属,离子束,磁控溅射,性能。

掺杂类金刚石薄膜论文文献综述

崔丽,孙丽丽,郭鹏,柯培玲,汪爱英[1](2019)在《自组织分层金属掺杂类金刚石薄膜的研究进展》一文中研究指出近年来,研究学者发现在沉积过程中,某些金属元素掺杂类金刚石薄膜时能够形成一种特殊的自组织分层纳米结构,这种纳米结构克服了人为调控多层薄膜的工艺复杂性及局限性,同时赋予了薄膜更加优异的性能。主要综述了国内外对金属掺杂类金刚石薄膜中自组织分层结构的影响因素、形成机理等方面的研究现状。详细阐述了金属类型及含量、沉积条件(脉冲频率、基体偏压、气流比、沉积温度、沉积时间)、沉积方法等参数对自组织分层结构的生成及富金属层厚、富碳层厚、层数等尺寸的作用规律。重点介绍了离子重排机理、金属催化机理、强离子辐照诱导机理和靶中毒机理四种自组织分层结构形成机理的特点,并探讨了目前研究工作中存在的一些不足,如自组织分层结构的形成机理尚不清晰。上述四种机理模型均具有一定的局限性,且如何设计工艺参数实现自组织分层结构的内在调控仍是一个科学难点。针对这些问题,提出了自组织分层结构碳基薄膜的未来研究方向。(本文来源于《表面技术》期刊2019年11期)

徐晓伟,郭鹏,李晓伟,崔平,汪爱英[2](2019)在《织构化Ti/Al共掺杂类金刚石薄膜摩擦学性能的研究》一文中研究指出类金刚石(DLC)薄膜由于具有优越的摩擦学性能被广泛应用于保护涂层。而金属掺杂和表面织构化作为改善摩擦副摩擦学性能的重要手段,对于进一步提高DLC的摩擦学性能并延长其使用寿命和可靠性有重要意义。本文采用两步工艺,通过电感耦合等离子体刻蚀以及线性离子束复合磁控溅射技术制备了具有不同面密度(0-40%)的Ti/Al共掺杂类金刚石(Ti/Al-DLC)薄膜,研究了不同织构密度对Ti/Al-DLC薄膜在干燥条件下的摩擦学行为的影响,以及相应的表面形貌,化学状态和力学性能。结果表明:表面织构化对Ti/Al-DLC薄膜的化学键态和力学性能没有影响。当织构密度为5%时,薄膜表现出稳定的摩擦趋势,与无织构样品相比,稳态摩擦系数降低了17.8%,同时磨损率降低了约44%,表现出优异的抗磨损能力。这是由磨削引起的较低石墨化和微凹坑的磨粒捕获效率的协同效应所致。(本文来源于《TFC'19第十五届全国薄膜技术学术研讨会摘要集》期刊2019-11-15)

王志伟,邹芹,李艳国,王明智[3](2019)在《硼及其协同掺杂金刚石薄膜的研究》一文中研究指出在金刚石中掺入杂质元素会在保留其原有优良性能的基础上获得其他性能,如掺入硼元素可以使金刚石成为P型半导体;协同掺杂其他元素可以改善金刚石的电学性能、催化活性等,甚至可以改变硼掺杂金刚石薄膜的导电机制。本文详细介绍了硼及其协同掺杂金刚石薄膜的制备方法、结构特点以及微观形貌,综述了影响其性能的因素及改性方法。(本文来源于《金刚石与磨料磨具工程》期刊2019年04期)

彭雅利,郭朝乾,林松盛,石倩,韦春贝[4](2019)在《综述金属掺杂对类金刚石薄膜结构和性能的影响》一文中研究指出类金刚石(DLC)薄膜具有优异的力学性能和摩擦学性能,但薄膜内部有很高的残余应力,与基体结合强度较低,这大大的限制了DLC薄膜的厚度与应用范围。通过金属掺杂可有效调控DLC薄膜的力学、摩擦学、生物学等方面的性能。根据金属元素在非晶碳基质中的存在形式,将金属掺杂类金刚石薄膜(Me-DLC)分为两类:弱碳金属掺杂类金刚石薄膜(如Al-DLC和Ag-DLC)和亲碳金属掺杂类金刚石薄膜(如Ti-DLC和Cr-DLC)。根据目前已有的研究,对这两类Me-DLC的结构和性能进行了归纳及分析。(本文来源于《电镀与涂饰》期刊2019年15期)

张岩,肖万伸[5](2019)在《掺杂类金刚石薄膜制备及其摩擦性能的仿真研究》一文中研究指出在分子动力学(Molecular dynamics,MD)仿真中利用高温加热和快速淬火,模拟制备出分别含有Cu或Si夹杂的类金刚石(DLC)薄膜,再通过刚性压头对表面的磨损,研究了夹杂含量(0%~30%)及位置分布(上、中、下)对材料摩擦性能的影响。仿真制备出的DLC薄膜密度为2.79g/cm~3,sp~2、sp~3杂化比例分别为36%、62%。摩擦结果表明,对于含Si-DLC复合薄膜,Si-C原子成键影响了材料中sp~3杂化比例,造成摩擦力随着夹杂含量的增加而下降;含Cu-DLC复合薄膜中Cu与C不成键,但一定量的Cu原子能够积聚造成滚珠效应,其摩擦力随夹杂含量增加先增后减。当两种夹杂仅分布在薄膜被摩擦的表面区域时,摩擦力均随夹杂含量的增加而下降;而分布在薄膜中间或底层时,表面的形变受到结构的阻碍难于传播到稍远的中间位置或最底层,因此,当中间层和最低层的夹杂含量改变时对表面磨擦性能的影响不大。(本文来源于《材料科学与工程学报》期刊2019年02期)

张而耕,张致富,周琼,黄彪,陈强[6](2019)在《不同比例钛掺杂对类金刚石薄膜性能的影响》一文中研究指出为研究钛掺杂对类金刚石薄膜性能的影响,采用磁控溅射制备不同比例钛掺杂类金刚石膜,并通过扫描电镜(SEM)、X-ray光电子谱仪、拉曼光谱仪(Roman)以及洛氏硬度压痕仪等设备对类金刚石薄膜的微观形貌、厚度、sp~2-C与sp~3-C比例、结合强度以及内应力等性能进行表征。经实验分析发现在类金刚石薄膜中掺杂不同比例的钛元素,薄膜的综合性能有不同程度的提高,膜基结合度提高,薄膜内应力下降。当钛掺杂含量为8.5%时,薄膜与基体的结合情况优异,内部应力由无钛掺杂时的4.5 GPa降至掺杂含量为8.5%时的2.1 GPa。从本文研究中可以得到钛元素掺杂有利的改善了类金刚石薄膜的性能,同时钛掺杂类金刚石薄膜存在一个合适的比例,即掺杂比例为8.5%时,薄膜的各方面性能表现优异。(本文来源于《陶瓷学报》期刊2019年02期)

何帅,孙德恩,曾宪光,王建川[7](2019)在《钨与钒掺杂类金刚石薄膜的温度适应摩擦磨损机制研究》一文中研究指出通过非平衡磁控溅射技术,改变沉积工艺参数,在不锈钢及单晶硅基体上制备未掺杂、钨(W)掺杂以及钒(V)掺杂类金刚石(DLC)薄膜。采用拉曼光谱,纳米压痕法对薄膜结构和力学性能进行表征。在室温、250℃、500℃进行磨损实验,研究其不同温度范围的摩擦磨损性能。研究结果表明:适量掺杂W元素,可显着地提高W-DLC膜力学与摩擦性能,在W靶电流为0.6A条件下,W-DLC膜具有最优的综合性能,纳米硬度和弹性模量分别为11.11GPa和169.25GPa,其中在250℃条件下摩擦系数低至0.044,室温磨损率为1.27×10-7 mm~3/Nm,但W-DLC薄膜难以适应高温;适量掺杂V元素,可以显着提高V-DLC膜的纳米硬度和弹性模量,并能改善高温摩擦性能,在V靶功率为1.2kW条件下,V-DLC薄膜的纳米硬度和弹性模量分别为37.36GPa和379.89GPa,其中在500℃高温摩擦条件下,V-DLC薄膜的摩擦系数最低为0.35。(本文来源于《化工新型材料》期刊2019年04期)

周永,孔翠翠,李晓伟,孙丽丽,郭鹏[8](2019)在《Ti/Al过渡层对共掺杂类金刚石薄膜性能的影响》一文中研究指出目的研究Ti/Al过渡层对不同溅射电流下的Ti/Al共掺杂DLC薄膜的成分、结构、机械性能和结合力的影响。方法采用线性离子束复合磁控溅射技术在316L基底上沉积含有Ti/Al过渡层的Ti/Al共掺杂DLC薄膜,利用场发射扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)、高分辨透射电镜(HRTEM)及共聚焦激光拉曼光谱仪分析了薄膜的界面形貌及键态结构。采用辉光放电光谱仪对样品成分进行深度分析,纳米压痕仪测量薄膜硬度及弹性模量,划痕测试系统测量膜基结合力,残余应力仪测量薄膜内应力。结果与未添加过渡层相比,添加Ti/Al过渡层对薄膜的结构和机械性能影响较小,且均在溅射电流为2.5 A时有最优的机械性能;然而,溅射电流为2.5 A时,添加过渡层使结合力从54.5 N提高到了67.2 N,提高了19%,残余应力从1.28 GPa降低到了0.25 GPa,降低了80%。结论 Ti/Al过渡层可缓解因DLC薄膜和基体的晶格匹配差异和膨胀系数不同而导致的高界面应力。在薄膜与基底界面,过渡层呈现典型柱状晶结构,可促进膜基界面间的机械互锁,显着改善薄膜与基体之间的结合力而不损伤其机械性能。(本文来源于《表面技术》期刊2019年01期)

许青波,王传新,代凯,钟艳,王旭杰[9](2018)在《硼掺杂金刚石薄膜电极在酸碱盐中的电化学性质研究》一文中研究指出通过热丝化学气相沉积技术,在P型单晶衬底上制备了掺硼金刚石薄膜电极。采用扫描电子显微镜和X射线衍射分析了丙酮流量对硼掺杂金刚石薄膜电极的表面形貌的影响,采用循环伏安法分析硼掺杂金刚石薄膜电极在不同浓度的酸碱盐电解液中的电化学特性。结果表明,硼掺杂金刚石薄膜质量随着丙酮流量的增加而先提高后下降的趋势,并且硼掺杂金刚石薄膜电极在不同电解质中存在不同的电化学窗口,中性溶液中的电化学窗口最宽在3.2 V以上,具有极强的电化学氧化性能。(本文来源于《真空与低温》期刊2018年05期)

张书姣,吴艳霞,朱丽楠,唐宾,刘颖[10](2018)在《不同掺杂对类金刚石薄膜的影响》一文中研究指出目的研究单掺Si和共掺Ag、Si对类金刚石薄膜的结构、摩擦学性能和耐腐蚀性能的影响。方法以高纯石墨靶、石墨与金属复合靶、Si靶作为靶材,采用射频增强磁控溅射技术制备不同掺杂种类的薄膜。通过XPS、拉曼光谱仪对薄膜的化学组成和结构进行分析,通过纳米压痕仪、摩擦磨损试验机、电化学工作站等,对薄膜的力学性能、摩擦学性能及耐腐蚀性能进行了系统研究。结果 Si元素单掺DLC会引起薄膜中sp~3C含量增加。Ag、Si共掺DLC后,由于Ag以金属相分布在薄膜中,并促进sp~2相的形成,导致sp~3C含量降低。掺杂元素后的DLC薄膜,硬度下降,但韧性提高,其中Ag、Si共掺的DLC薄膜的弹性恢复系数达到79%。此外,Ag、Si共掺DLC薄膜在多种气氛(Ar、O_2、N_2)中都具有优异的摩擦学性能,磨损寿命均超过30 min,其中在N_2气中的摩擦系数最低(<0.1),并在NaCl溶液中的腐蚀电流密度比304不锈钢基体降低了近2个数量级,具有良好的耐腐蚀性。结论 Si与Ag共掺DLC薄膜较Si单掺薄膜具有更好的摩擦环境适应性和耐腐蚀性能。(本文来源于《表面技术》期刊2018年09期)

掺杂类金刚石薄膜论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

类金刚石(DLC)薄膜由于具有优越的摩擦学性能被广泛应用于保护涂层。而金属掺杂和表面织构化作为改善摩擦副摩擦学性能的重要手段,对于进一步提高DLC的摩擦学性能并延长其使用寿命和可靠性有重要意义。本文采用两步工艺,通过电感耦合等离子体刻蚀以及线性离子束复合磁控溅射技术制备了具有不同面密度(0-40%)的Ti/Al共掺杂类金刚石(Ti/Al-DLC)薄膜,研究了不同织构密度对Ti/Al-DLC薄膜在干燥条件下的摩擦学行为的影响,以及相应的表面形貌,化学状态和力学性能。结果表明:表面织构化对Ti/Al-DLC薄膜的化学键态和力学性能没有影响。当织构密度为5%时,薄膜表现出稳定的摩擦趋势,与无织构样品相比,稳态摩擦系数降低了17.8%,同时磨损率降低了约44%,表现出优异的抗磨损能力。这是由磨削引起的较低石墨化和微凹坑的磨粒捕获效率的协同效应所致。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

掺杂类金刚石薄膜论文参考文献

[1].崔丽,孙丽丽,郭鹏,柯培玲,汪爱英.自组织分层金属掺杂类金刚石薄膜的研究进展[J].表面技术.2019

[2].徐晓伟,郭鹏,李晓伟,崔平,汪爱英.织构化Ti/Al共掺杂类金刚石薄膜摩擦学性能的研究[C].TFC'19第十五届全国薄膜技术学术研讨会摘要集.2019

[3].王志伟,邹芹,李艳国,王明智.硼及其协同掺杂金刚石薄膜的研究[J].金刚石与磨料磨具工程.2019

[4].彭雅利,郭朝乾,林松盛,石倩,韦春贝.综述金属掺杂对类金刚石薄膜结构和性能的影响[J].电镀与涂饰.2019

[5].张岩,肖万伸.掺杂类金刚石薄膜制备及其摩擦性能的仿真研究[J].材料科学与工程学报.2019

[6].张而耕,张致富,周琼,黄彪,陈强.不同比例钛掺杂对类金刚石薄膜性能的影响[J].陶瓷学报.2019

[7].何帅,孙德恩,曾宪光,王建川.钨与钒掺杂类金刚石薄膜的温度适应摩擦磨损机制研究[J].化工新型材料.2019

[8].周永,孔翠翠,李晓伟,孙丽丽,郭鹏.Ti/Al过渡层对共掺杂类金刚石薄膜性能的影响[J].表面技术.2019

[9].许青波,王传新,代凯,钟艳,王旭杰.硼掺杂金刚石薄膜电极在酸碱盐中的电化学性质研究[J].真空与低温.2018

[10].张书姣,吴艳霞,朱丽楠,唐宾,刘颖.不同掺杂对类金刚石薄膜的影响[J].表面技术.2018

论文知识图

未掺和掺杂类金刚石薄膜的Rama...-11不同La2O3掺杂量非晶碳膜的变温电阻...4.1不同中频电流下的Ti-DLC薄膜...载荷与摩擦力的关系扫描速度与摩擦力的关系表面粗糙峰截面形貌图

标签:;  ;  ;  ;  ;  ;  ;  

掺杂类金刚石薄膜论文_崔丽,孙丽丽,郭鹏,柯培玲,汪爱英
下载Doc文档

猜你喜欢