电力系统自动化与智能技术分析赵志

电力系统自动化与智能技术分析赵志

(国网湖北省电力公司宜昌市夷陵区供电公司湖北宜昌443100)

摘要:电力系统是一个庞大且复杂的系统,加上分布广、特性强,需要对每个环节进行检测,因此智能技术的运用就十分有必要。因为智能技术能够检测各个环节,工作人员根据检测结果采取相应的措施,并且通过技术加强问题的检测和管理。本文对电力系统自动化与智能技术进行了探讨。

关键词:电力系统;自动化;智能技术;应用

智能技术的发展与应用对于电力系统自动化有着极其重要的作用,相信随着社会的进一步发展人们对于智能技术的研究会越来越深入,智能技术将会有一个新的突破,它将会更好的为电力系统服务,全面的提高电力系统自动化的进程,让电力系统可以更加安全的、稳定的、高效的为用户提供电能。通过智能技术将会极大的提高电力系统的工作效率,缩短电力系统员工的工作时间,给电力行业带来更高的经济效益。

1智能技术的应用优势

1.1智能发电

智能技术在实际工作中的应用将能够进一步优化电力控制系统,电网结构和电源结构也将能够得到有效改善。在实际应用过程中对于实现风电、光伏发电等系能源的科学合理利用也将能够起到非常重要的作用。信息传输过程中智能技术的应用将能够实现厂网信息的双向交互,这样就能够有效提升电网对发电侧的控制水平,这对于实现能源的可持续发展具有非常重要的意义。

1.2智能调度

智能电网之所以能够称之为智能电网,一个很重要的原因就是因为通过利用智能技术将能够实现智能调度。从调度系统来看,为了满足要求就需要具有更加全面且准确的数据采集系统、强大的智能安全预警功能。同时在实际调度决策过程中还必须要高度重视系统安全和经济协调。当电力系统一旦出现故障号之后要能够及时快速地诊断故障并且要能够为故障恢复提供决策。这些功能的实现主要是利用智能技术来实现的。

1.3智能用电

智能技术在电力系统中的应用不仅要实现智能调度,同时还要能够实现智能用电。在实际运行过程中如果发现用电设备智能化和信息采集交互能力较低的时候,此时就应该全面开展智能用电服务。要构建起智能化双向互动体系,从而来实现电网同用户的积极交互,这样将能够有效提升用户服务质量,最终将有助于满足用户多元化的用电需求。

为了实现智能用电,在实际工作中还应该安装智能电表这样的高级测量系统,通过该系统的构建从而为电力企业和用户提供联系的纽带。这样将有助于实现系统的科学运行,对于实现高水平的资源管理也是非常重要的。在实际工作中将能够实现电力资源的有效协调,这对于缓解电力资源紧张问题具有非常重要的意义。

2电力系统自动化中智能技术的应用

2.1模糊理论

通过语言变量及逻辑推理理论的应用,使电力设备及电力系统等达到模拟练习的效果,此种情况即为模糊理论。将模糊逻辑应用在电力自动化控制系统中,能够使电力系统自身具备健全且极为系统的逻辑推理能力,并通过此种模糊推理的方式,将人类的决策做进一步的模拟,并通过电力自动化系统得以发送指令并实现操作。在此情况下,技术数据能够依据规则,对逻辑进程进行严格的控制,即通过模糊理论及逻辑推理,能够模拟人的决策,对电力自动化系统进行前期的模糊输入或直观推理,使电力自动化系统完成决策工作。对于电力自动化系统来说,其能够将模糊理论所发出的模糊指令,简单识别为人力的逻辑推理与决策,并将模糊理论等同于进行操作的人员大脑。

2.2神经网络控制

此处所说的神经网络控制由来已久,自20世纪40年代初期,神经网络控制便以开始进入众多科研人员的视野和认知当中。但此种神经网络控制的研发,却未能在接下来的时间里,得出较为骄人的研究成果,直至人们对神经网络的需求逐步增加,才使得此种慢慢搁浅的研发项目重新受到人们的重视与关注,并通过全新科技的应用,在神经网络控制课题方面,取得了极为重要的研究成果[2]。这也为后期神经网络控制系统的建立,打下了坚实的基础。所谓神经网络控制,即采用特定的方式,将数量众多的神经元进行紧密连接而形成的。并且神经网络具有特定的、进行权重连接的信息,并能够依据特殊的学习算法将权重信息进行不断调整,从而达成自m维空间中至n维空间中的映射。而且,此种神经网络所形成的映射为复杂化的非线性映射。现阶段,对于神经网络的研发方向为建起神经网络模型,以及与其所对应的神经网络学习算法。此外,神经网络硬件的实现问题,也是现阶段神经网络研发中重要的课题内容之一。

2.3线性控制

线性控制,也可称为线性最优控制,此种研究是建立在优化理论基础上的研究形式,也是现代控制理论中重要的构成部分。并且,此种线性控制形式,也是当前阶段现代控制理论中研发深入程度最大,且最为成熟的理论控制形式。这也使得线性最优控制成为了当前应用最为广泛的控制形式之一。部分研究线性最优控制的科研人员,通过不懈的努力,终将线性最优控制的理论在实践中得以研发及应用,并明确论述出线性控制理论的应用依据。即通过最优控制中的励磁控制,能够使长距离输电线路的输电能力得到进一步加强,并能使动态品质得到显著的改善。并且,经过长期、反复的试验得出结论:将此种最优励磁控制方式应用与大型设备之中,所起到的效果最佳。除此之外,通过理论与实践的充分结合,也促使制动电阻器通过水力发电时间达成最优控制模式得以实现,并在电力系统中得到了普遍的应用。

2.4专家系统

由于智能技术的融入而形成的专家系统,在电力自动化系统中被广泛应用。这其中涉及的方面众多,不仅包括电力系统性能的恢复、应急处理系统的应用、电力系统各种状态的调试与切换等,更涵盖了系统电源状态的识别、故障的隔离与排除,以及短期的电力负荷警示等内容。而其中专家系统的约束力较强,且在智能化程度上仍有待提升。其可进行智能化的操作,但却无法对各类操作融入模糊理论,无法对适配功能形成深入的认知,这也使得其分析问题、解决问题,以及学习能力方面都具有明显的局限性。同时,由于分析问题与解决问题的能力缺乏,也导致此种专家系统对较为复杂问题的组织能力也明显不足。

2.5集成智能系统

对于集成智能系统而言,其不仅包括智能控制方法与智能系统,还涉及与电力自动化系统进行深入的交联。并且,此种集成智能系统是现阶段所应用到的较为先进与形成规模的控制形式。现阶段,电力自动化系统中所应用到的集成智能系统研发程度较低,但通过专家系统与神经网络相融合模式的提出,使得继承智能系统在研发上进入了全新的阶段,同时也为集成智能系统的进一步研发创造出众多可供参考和借鉴的内容。此外,随着智能技术在电力自动化系统中的深度融入,也使得对于集成智能系统的研发上升到全新的高度。此种全新的继承智能系统,即是将智能技术在电力自动化系统中所实现的功能予以融合,并采用可起到模拟人类决策意识的模糊逻辑理论作为系统的基础架构,使得集成智能系统必将能够实现最大程度的智能化,使电力自动化系统得到更为完善的发展。

综上所述,电力系统快速发展的背景下,人们对此要求将会越来越高。为了满足人们需要在今后电力系统自动化控制过程中就必须要加强智能技术的应用,这一技术的应用是今后发展的必然趋势。

参考文献:

[1]李天一,宋春辉.探析电力系统自动化中智能技术的应用[J].黑龙江科技信息.2016(35)

[2]魏春晖.电力系统自动化中智能技术的应用[J].电子技术与软件工程.2015(24)

[3]张厚朝.浅谈电力系统自动化智能技术的应用[J].低碳世界.2016(19)

标签:;  ;  ;  

电力系统自动化与智能技术分析赵志
下载Doc文档

猜你喜欢