论文摘要
利用1995—2017年登陆华南地区的台风登陆时最大风速极值数据,构建基于模糊时间序列的台风登陆时最大风速极值预测模型,并将该模型与传统时间序列ARIMA模型作对比。其预测结果表明,模糊时间序列的平均绝对误差、平均相对误差和均方根误差分别为2. 621 m·s-1、0. 066和2. 727 m·s-1,预测的精确度明显高于传统时间序列ARIMA模型,同时也表明将模糊时间序列应用于登陆时最大风速极值的预测能够获得较理想的预测结果。
论文目录
文章来源
类型: 期刊论文
作者: 王萌,刘合香,卢耀健,李广桃
关键词: 模糊时间序列,模糊化,登陆时最大风速极值,华南台风,风速预测
来源: 海洋气象学报 2019年04期
年度: 2019
分类: 基础科学
专业: 气象学
单位: 南宁师范大学数学与统计科学学院,广西北部湾海洋灾害研究重点实验室
基金: 国家自然科学基金项目(41665006,11561009),广西重点研发计划项目(桂科AB19110020)
分类号: P457.8
DOI: 10.19513/j.cnki.issn2096-3599.2019.04.008
页码: 68-74
总页数: 7
文件大小: 264K
下载量: 107
相关论文文献
- [1].基于非稳态时间序列的生理控制模型研究[J]. 系统工程理论与实践 2020(02)
- [2].基于多样化top-k shapelets转换的时间序列分类方法[J]. 计算机应用 2017(02)
- [3].时间序列趋势预测[J]. 现代计算机(专业版) 2017(02)
- [4].基于分型转折点的证券时间序列分段表示法[J]. 商 2016(31)
- [5].基于ARMA模型的股价预测及实证研究[J]. 智富时代 2017(02)
- [6].《漫长的告别》(年度资助摄影图书)[J]. 中国摄影 2017(04)
- [7].王嵬作品[J]. 当代油画 2017(07)
- [8].基于模糊时间序列的计算机信息粒构建研究[J]. 粘接 2020(10)
- [9].基于时间序列挖掘的合成旅装备维修保障能力预测[J]. 系统工程与电子技术 2020(04)
- [10].风速时间序列混沌判定方法比较研究[J]. 热能动力工程 2018(07)
- [11].土壤退化时间序列的构建及其在我国土壤退化研究中的意义[J]. 土壤 2015(06)
- [12].基于信息颗粒和模糊聚类的时间序列分割[J]. 模糊系统与数学 2015(01)
- [13].不确定时间序列的降维及相似性匹配[J]. 计算机科学与探索 2015(04)
- [14].时间序列的异常点诊断方法[J]. 中国卫生统计 2011(04)
- [15].基于独立成分分析的时间序列谱聚类方法[J]. 系统工程理论与实践 2011(10)
- [16].面向不确定时间序列的分类方法[J]. 计算机研究与发展 2011(S3)
- [17].一种基于频繁模式的时间序列分类框架[J]. 电子与信息学报 2010(02)
- [18].超启发式组合时间序列预报模型[J]. 福建电脑 2020(08)
- [19].基于深度学习的时间序列算法综述[J]. 信息技术与信息化 2019(01)
- [20].基于时间序列符号化模式表征的有向加权复杂网络[J]. 物理学报 2017(21)
- [21].基于互相关的二阶段时间序列聚类方法[J]. 计算机工程与应用 2016(19)
- [22].基于期货市场行为的时间序列切分及表示方法研究[J]. 中国管理信息化 2015(19)
- [23].基于形态特征的时间序列符号聚合近似方法[J]. 模式识别与人工智能 2011(05)
- [24].基于模糊时间序列对我国对外贸易中的进口水平的预测[J]. 统计与决策 2010(23)
- [25].模糊变量时间序列及其应用[J]. 辽宁工程技术大学学报(自然科学版) 2010(06)
- [26].时间序列流的分层段模型[J]. 小型微型计算机系统 2009(04)
- [27].发动机转速时间序列分形特征分析[J]. 机械科学与技术 2008(11)
- [28].基于HDAD的异构航空数据异常检测的研究[J]. 计算机仿真 2020(03)
- [29].重庆藕塘滑坡地下水位时间序列混沌性判别与预测[J]. 人民长江 2020(S1)
- [30].基于能量过滤的不确定时间序列数据清洗方法[J]. 智能计算机与应用 2019(04)
标签:模糊时间序列论文; 模糊化论文; 登陆时最大风速极值论文; 华南台风论文; 风速预测论文;