论文摘要
为提升大规模风电场风电功率超短期预测精度,减少由风电功率大幅度波动对电力系统带来的不利影响,提出一种基于原子稀疏分解(Atomic Sparse Decomposition,ASD)和混沌理论的风电功率超短期多步预测模型.首先,利用ASD良好的序列趋势跟踪特性,将风电功率时间序列分解成多个原子趋势分量和一个残差随机分量;其次分别利用自适应预测法和混沌理论对两分量进行超短期预测;最后,将两分量的预测结果叠加,得到最终的风电功率预测结果.选取我国东北某区域风电功率数据为例,算例结果表明,相较于传统预测模型,本文的预测方法能够有效地提升大规模风电场风电功率超短期预测精度.
论文目录
文章来源
类型: 期刊论文
作者: 杨茂,刘慧宇,崔杨
关键词: 超短期风电功率预测,原子稀疏分解,混沌理论,预测精度,分频预测
来源: 昆明理工大学学报(自然科学版) 2019年04期
年度: 2019
分类: 工程科技Ⅱ辑
专业: 电力工业
单位: 东北电力大学电气工程学院
基金: 国家重点研发计划项目(2018YFB0904200)
分类号: TM614
DOI: 10.16112/j.cnki.53-1223/n.2019.04.010
页码: 64-71
总页数: 8
文件大小: 2577K
下载量: 124
相关论文文献
- [1].风电功率概率预测研究综述[J]. 东北电力大学学报 2020(02)
- [2].计及风向信息的风电功率异常数据识别研究[J]. 太阳能学报 2019(11)
- [3].基于约翰森协整及格兰杰因果检验的风电功率关键要素辨识与预测方法[J]. 供用电 2019(12)
- [4].风电功率组合预测技术研究综述[J]. 气象科技进展 2016(06)
- [5].基于人工鱼群优化算法的支持向量机短期风电功率预测模型[J]. 电气工程学报 2016(10)
- [6].基于混沌理论的风电功率超短期多步预测的误差分析[J]. 电力系统保护与控制 2017(04)
- [7].基于风电功率周期特性的组合预测研究[J]. 太阳能学报 2016(07)
- [8].基于相似性修正的风电功率爬坡事件预测方法[J]. 中国电机工程学报 2017(02)
- [9].基于t Location-Scale分布的风电功率概率预测研究[J]. 中国电力 2017(01)
- [10].风电功率预测信息在日前机电组组合中的应用[J]. 建材与装饰 2017(07)
- [11].基于近似熵的风电功率可预测性研究[J]. 太阳能学报 2016(10)
- [12].基于改进的灰色模型和支持向量机的风电功率预测[J]. 沈阳大学学报(自然科学版) 2017(03)
- [13].风电功率预测技术研究综述[J]. 现代电力 2017(03)
- [14].基于改进马尔科夫链的风电功率时间序列模型[J]. 电力建设 2017(07)
- [15].基于思维进化算法的风电功率预测研究[J]. 计算技术与自动化 2017(02)
- [16].基于集对分析聚类法的超短期风电功率区间预测[J]. 可再生能源 2017(09)
- [17].考虑风力发电随机性的超短期风电功率区间预测研究[J]. 太阳能学报 2017(05)
- [18].超短期风电功率爬坡事件对风电功率实时预测误差的影响研究[J]. 太阳能学报 2017(03)
- [19].风电功率概率预测方法及展望[J]. 电力系统自动化 2017(18)
- [20].基于模糊粒计算的风电功率实时预测研究[J]. 东北电力大学学报 2017(05)
- [21].新生儿静息与任务脑电功率的发展比较研究[J]. 中国儿童保健杂志 2016(05)
- [22].风电功率短时骤降的极值统计分析[J]. 电力系统保护与控制 2015(07)
- [23].飞轮储能在风电功率预测系统中的应用探究[J]. 河北工业大学学报 2015(02)
- [24].风速及风电功率预测研究综述[J]. 山东电力技术 2015(07)
- [25].核心素养理念下优化物理实验探究过程的思考与实践——以《测量小灯泡的电功率》为例[J]. 中学生数理化(自主招生) 2020(Z1)
- [26].解读电功率[J]. 中学生数理化(初中版.中考版) 2018(12)
- [27].电功率的解题思考[J]. 数理化学习(初中版) 2018(11)
- [28].V变I变P更变数学巧解电功率[J]. 数理化学习(初中版) 2019(11)
- [29].谈谈电功率[J]. 数理化学习(初中版) 2009(01)
- [30].好好认知电功率[J]. 数理化学习(初中版) 2010(03)
标签:超短期风电功率预测论文; 原子稀疏分解论文; 混沌理论论文; 预测精度论文; 分频预测论文;