基于LSTM循环神经网络的储层物性参数预测方法研究

基于LSTM循环神经网络的储层物性参数预测方法研究

论文摘要

储层物性参数是反映储层油气储集能力的重要参数,表征了不同地质时期的沉积特征.地球物理测井参数由深及浅反映了不同地质时期的声、放、电等沉积特征,因而测井参数和泥质含量(孔隙度)之间有很强非线性映射关系,并具有时间序列特征.充分利用多种测井参数预测储层泥质含量和孔隙度对于储层精细描述具有十分重要的意义.深度学习技术具有极强的数据结构挖掘能力,目前,全连接的深度神经网络已经在泥质含量预测进行了初步尝试并取得了较好的效果.而长短时记忆(LSTM)循环神经网络更适合解决序列化的数据问题,因此本文提出基于LSTM循环神经网络利用多种测井参数进行泥质含量和孔隙度预测的方法,预测结果的均方根误差比常规全连接深度神经网络分别下降了42.2%和48.6%,实际应用表明,对于具有序列化特性的泥质含量和孔隙度,LSTM循环神经网络预测的准确性和稳定性要明显优于常规全连接深度神经网络.

论文目录

  • 0 引 言
  • 1 深度学习
  • 2 全连接深度神经网络
  • 3 LSTM循环神经网络
  •   3.1 LSTM循环神经网络原理
  •   3.2 LSTM循环神经网络的预测框架
  •   3.3 LSTM神经网络的训练
  • 4 应用效果分析
  •   4.1 数据准备
  •   4.2 网络训练和应用
  •   4.3 应用效果分析
  • 5 结 论
  • 文章来源

    类型: 期刊论文

    作者: 安鹏,曹丹平,赵宝银,杨晓利,张明

    关键词: 储层物性参数,泥质含量,孔隙度,循环神经网络,深度学习

    来源: 地球物理学进展 2019年05期

    年度: 2019

    分类: 基础科学,工程科技Ⅰ辑

    专业: 地质学,石油天然气工业

    单位: 中国石油大学(华东)地球科学与技术学院,中国石油冀东油田分公司勘探开发研究院

    基金: 国家自然科学基金(41774137),高等学校学科创新引智计划(111计划)(B18055),国家重大科技专项(2016ZX05006-006)联合资助

    分类号: P618.13;P631.81

    页码: 1849-1858

    总页数: 10

    文件大小: 7121K

    下载量: 842

    相关论文文献

    • [1].基于优化神经网络的地质灾害监测预警仿真[J]. 计算机仿真 2019(11)
    • [2].基于进化神经网络的304不锈钢车削加工表面粗糙度预测[J]. 轻工机械 2019(06)
    • [3].时频联合长时循环神经网络[J]. 计算机研究与发展 2019(12)
    • [4].几种典型卷积神经网络的权重分析与研究[J]. 青岛大学学报(自然科学版) 2019(04)
    • [5].基于GA-BP神经网络异纤分拣机检测参数优化[J]. 棉纺织技术 2020(01)
    • [6].基于集成神经网络的织物主观风格预测研究[J]. 纺织科技进展 2020(01)
    • [7].试析神经网络技术在机械工程中的应用及发展[J]. 网络安全技术与应用 2020(02)
    • [8].一种深度小波过程神经网络及在时变信号分类中的应用[J]. 软件 2020(02)
    • [9].不同结构深度神经网络的时间域航空电磁数据成像性能分析[J]. 世界地质 2020(01)
    • [10].基于深度神经网络的航班保障时间预测研究[J]. 系统仿真学报 2020(04)
    • [11].基于生成对抗网络和深度神经网络的武器系统效能评估[J]. 计算机应用与软件 2020(02)
    • [12].基于循环神经网络的双轴打捆机智能换挡策略研究[J]. 安徽工程大学学报 2020(01)
    • [13].基于图神经网络的实体对齐研究综述[J]. 现代计算机 2020(09)
    • [14].基于改进的循环神经网络深度学习跌倒检测算法[J]. 电脑编程技巧与维护 2020(03)
    • [15].神经网络探索物理问题[J]. 物理 2020(03)
    • [16].基于GA-BP神经网络的城市用水量预测[J]. 现代电子技术 2020(08)
    • [17].基于深度神经网络的药物蛋白虚拟筛选[J]. 软件工程 2020(05)
    • [18].基于轻量级神经网络的人群计数模型设计[J]. 无线电工程 2020(06)
    • [19].高效深度神经网络综述[J]. 电信科学 2020(04)
    • [20].含磁场耦合忆阻神经网络放电行为研究[J]. 广西师范大学学报(自然科学版) 2020(03)
    • [21].基于神经网络及特征运算的老年人平衡能力分析[J]. 重庆工商大学学报(自然科学版) 2020(04)
    • [22].神经网络技术在机械工程中的应用及发展探析[J]. 科技创新与应用 2020(18)
    • [23].基于竞争神经网络的变电站巡视周期分类[J]. 科技创新与应用 2020(18)
    • [24].基于双向循环神经网络的语音识别算法[J]. 电脑知识与技术 2020(10)
    • [25].结合相似日与改进神经网络的短期光伏发电预测[J]. 广西电业 2020(04)
    • [26].基于神经网络的流感大数据分析[J]. 中华医学图书情报杂志 2020(03)
    • [27].长短时记忆神经网络在地电场数据处理中的应用[J]. 地球物理学报 2020(08)
    • [28].基于门控循环单元神经网络的公交到站时间预测[J]. 南通大学学报(自然科学版) 2020(02)
    • [29].鼠脑神经网络的同步辐射3D成像研究[J]. 核技术 2020(07)
    • [30].基于长短记忆神经网络的短期光伏发电预测技术研究[J]. 华北电力大学学报(自然科学版) 2020(04)

    标签:;  ;  ;  ;  ;  

    基于LSTM循环神经网络的储层物性参数预测方法研究
    下载Doc文档

    猜你喜欢