根系吸水论文_莫凡,黄忠华,罗维钢,农梦玲

导读:本文包含了根系吸水论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:根系,吸水,同位素,模型,水分,苹果树,干旱。

根系吸水论文文献综述

莫凡,黄忠华,罗维钢,农梦玲[1](2019)在《基于土壤墒情变化的甘蔗关键生长期根系吸水动态和缺水胁迫诊断研究》一文中研究指出[目的]根据土壤墒情的实时变化研究甘蔗各关键生长期根系的吸水特性,为直观可靠地诊断甘蔗水分亏缺和指导科学灌溉提供技术方法和理论依据。[方法]在甘蔗根际安装"智墒"水分测定仪,根据苗期、分蘖期、伸长期的根系剖面分布实时监测各关键生长期主根区土壤墒情变化,并利用测量的数据进行根系昼夜吸水动态分析和缺水胁迫诊断。[结果]甘蔗根系总体上是从上午8:00开始吸收土壤水分,18:00之后逐渐停止吸水,表现出明显的昼夜变化规律。在无外源水分补充的条件下,苗期、分蘖期和伸长期根区土壤含水量均呈现出波动下降的变化趋势,当墒情曲线由阶梯状最终变平缓时,可以判断根系吸水受到抑制,甘蔗出现水分亏缺。[结论]对土壤墒情的实时监控能够及时掌握甘蔗根系每天吸水情况的变化,实现缺水胁迫的快速诊断,从而为开展节水灌溉和制定抗旱决策提供预测预报。(本文来源于《西南农业学报》期刊2019年09期)

刘伟,徐冰,汤鹏程,李泽坤[2](2019)在《土壤水热与根系吸水模型研究进展及其在西藏研究展望》一文中研究指出在土壤根区水分运动规律的研究中,通常以土壤水热耦合模型来定量描述和预测土壤水分变化规律,以根系吸水模型来模拟作物根区根系吸水机理及过程。西藏高寒地区低压低氧、强辐射、近地层冷热交换频繁,加之土层稀薄,浅层土壤水转化过程复杂,作物生长受水热胁迫影响较为明显,作物根区的水热耦合作用对根系吸水及能量传输和物质运移影响显着。为了进一步探求西藏地区特殊水热条件下的根区水热运移机理,摸清西藏高寒区作物根系吸水规律,就国内外土壤水热耦合模型和根系吸水模型的相关研究做了综述,针对西藏地区特有的水热条件,建议将水热耦合模型与根系吸水模型结合应用,构建考虑水热耦合因素的根系吸水模型,以更好地适应当地实际,揭示根系土壤水分运动规律。(本文来源于《水资源与水工程学报》期刊2019年03期)

郭飞,高磊,马娟娟[3](2019)在《基于氢氧稳定同位素的矮砧苹果树根系吸水深度研究》一文中研究指出为了研究矮砧苹果树根系吸水深度,利用氢氧稳定同位素技术,测定了7年生矮砧苹果树在萌芽花期、新梢旺长期和果实膨大期不同深度土壤水的稳定同位素值,并应用Iso Source多元线性模型分析水源的水分贡献率。结果表明:矮砧苹果树在萌芽花期主要利用0~20 cm(59.5%)处的土壤水;在新梢旺长期6月主要吸水深度为0~20 cm(42.9%)和20~40 cm(11.1%);新梢旺长期7月根系的主要吸水深度为0~20 cm(24.3%)和20~40 cm(29.1%);果实膨大期8月为0~20 cm(23.6%)、20~40 cm(37.1%)和40~60 cm(11.6%);果实膨大期9月为0~20 cm(26.3%)、20~40 cm(27.3%)和40~60 cm(13.8%)。(本文来源于《节水灌溉》期刊2019年06期)

李会杰[4](2019)在《黄土高原林地深层土壤根系吸水过程及其对水分胁迫和土壤碳输入的影响》一文中研究指出退耕还林是应对气候变化,控制水土流失和改善区域生态环境的重要措施,已被联合国写入2030年可持续发展议程。黄土高原曾是全球土壤侵蚀最严重的区域,生态环境极其脆弱。为控制水土流失,改善区域生态环境,国家在黄土高原大面积实施了退耕还林工程。与农田和草地等浅根植物相比,林地具有更高的需水量和更深的根系。前人研究表明:浅层土壤水无法满足成龄林地蒸散需求,并引发了深层土壤干燥化和“小老树”等一系列生态问题。因此,探究林地对于深层土壤水的利用过程及林地水分胁迫对深层土壤水分状态的响应,对于明确林地水分需求、阐明林地耗水策略和制定合理的造林方案均有重要意义。同时,作为水、碳循环的枢纽,根系吸水直接影响深层土壤的碳储量。因此,理清林地深层耗水和土壤碳输入的关系对于准确评估森林生态系统碳储量及其在全球气候变化中的作用具有重要意义。本文以黄土高原退耕还林为研究背景,以林地根系在深层土壤中的吸水过程为研究主线,通过区域尺度配对试验、空间换时间的研究方法、碳同位素技术、数值模型和大数据分析等多种方法、技术手段,分析了退耕还林以后深层土壤根系吸水、根系发育、林地水分胁迫和根系对深层土壤碳输入在长时间序列上的变化过程及各因素之间的交互作用。主要结论如下:(1)在黄土高原地区,农田/草地造林后,被林地根系吸收的深度>1 m的深层土壤水很难得到降雨有效补给,进而导致深层土壤含水量随林龄增加逐渐降低,促使林地不断吸收更深土层的土壤水,并使林地在土壤中的最大耗水深度最终超过25 m。因此,随着林龄增加,林地在深层土壤中的根系吸水只能沿土壤含水量降低的方向进行,本研究将这一根系吸水模式定义为单向的根系吸水模式。单向根系吸水使深层土壤储水量随林龄增加逐渐降低:在6至25年间,深层土壤储水量每年减少84 mm,占造林区年均降水量(518 mm)的16%。21-25年的林地深层土壤水损失量达1622±186 mm,大于造林区多年平均降水量的3倍。上述结果对于未来造林强度及造林区域的选择具有重要指导意义。(2)在种植密度、降雨量、土壤初始含水量等众多因素中,深层土壤储水量损失可以最大程度地解释林地根系深度变化(R~2=0.86)。在单向根系吸水模式下,深层土壤储水量不断降低,刺激林地以每年1.00±0.28 m的速率向深层土壤生长根系,从而吸收更深土层的土壤水分。21至25年林地的平均最大根系深度达24.9±0.74 m。林地61%±20%细根(直径<2 mm)位于1 m以下的深层土壤中,且随林龄增加细根在深层土壤中的比例逐渐增加。由于还林后深层土壤储水量一旦降低将很难在林地生存时得到降雨补给,因此,林地在特定深层土壤的吸水量几乎是固定的,它的大小取决于树木耗水前土壤的初始含水量和萎蔫系数的差值。深层土壤各层恒定的吸水量使得林地在各层生长的根系总量相近,并促使林地根系分布从幼龄林地中的指数递减模式逐步过渡到大龄林地中相对均匀的根系分布模式。(3)造林后大部分降水在入渗至深层土壤以前就被蒸散消耗殆尽。因此,根系从深层土壤吸收的水为多年以前降雨入渗形成的老水。长武县林龄22年的苹果树所吸收的深层土壤水中约有76%为1963年以前的老水。林地强烈的耗水限制了降水入渗及肥料随降水向深层土壤的迁移,进而使大量根系位于农业施肥所致的养分区以外,进而出现了林地根区水分、养分分离的现象。在长武塬区,18和22年的果园有超过60%的根系在肥料分布区以外。(4)在王东沟小流域,由于浅层土壤可以被降雨补给,不同林龄苹果园0~1 m浅层土壤水分无显着差异。1 m以下深层土壤因很难得到降雨有效补给,水分含量则随林龄增加显着降低。林地叶面积指数和日蒸腾量在16年达到峰值,之后随林龄增加逐渐降低。尽管23年苹果树的胸径较大,但其在2017生长季的蒸腾总量仅为16年果园的77%。果树1 m以下根区的土壤水分含量与果树实际蒸腾和潜在蒸腾的比值(T_a/T_p)显着正相关(R~2=0.85),这表明深层土壤水分状况直接影响林地的蒸腾耗水和水分胁迫状况。(5)对黄土高原五个不同地区树木年轮样品分析发现:随着林龄增加,不同树种的年轮δ~(13)C均呈逐步贫化的趋势。这表明:随着林龄增加,深层土壤干燥化虽然越来越严重,但林地的水分胁迫不仅没有增加,反而逐渐减小。对王东沟小流域不同林龄苹果园的进一步采样分析表明:深层土壤供水不足时,大龄林地叶面积指数和气孔密度逐渐降低,这可能会导致单个气孔的耗水量变大,进而导致林地在缺水条件下出现光合产物贫化的现象。以上研究结果表明在研究林地水分胁迫程度时应该区分尺度:在单株尺度上林地耗水量小并不能说明林地在微观尺度上(如气孔尺度)受到的水分胁迫程度就大。同时,这一结果也表明,“小老树”虽然耗水量少、生产力低下,但是也有可能通过自身生理调节长期存活下去,这一发现对于探究退耕还林工程的可持续性具有重要意义。(6)农田/草地造林后,林地根系生物量向深层土壤输入的碳随林龄逐渐增加,1~25间年的均值为0.17±0.04 t ha~(-1) yr~(-1),且林地在深层土壤中的吸水量和根系生物量对土壤的碳输入显着正相关,这一现象可视为林地深层土壤的水碳交易。林地根系生物量的51%±4%位于1 m以下的深层土壤。然而,林地根系没有显着改变土壤有机碳含量。这主要是由于深厚的黄土本身是一个巨大的有机碳库,例如长武农田1~23.2 m土壤的有机碳储量达788±10 t ha~(-1)。而22年苹果根系生物量所含的碳仅占农田有机碳储量的1.1%,因此,有限的根系无法显着改变土壤有机碳含量。同时,林地的过度耗水降低了深层土壤水分的有效性,有可能限制了细根的周转和根系分泌物的释放,进而降低林地根系对深层土壤有机碳的改变幅度。(7)通过Hydrus-1D模型对苹果园SPAC系统水分传输模拟发现,与采用实测的相对均匀的根系分布进行模拟相比,传统的指数根系分布模型在模拟前期(林龄在13年之前)会低估林地蒸腾量。这主要是由于指数根系分布下林地根系主要集中在浅层土壤,而浅层土壤会在蒸散影响下出现间歇性水分胁迫,进而降低林地蒸腾量;但是,在相对均匀的根系分布下,林地可以从含水量较高的更深土层吸收水分,所以蒸腾量在前期较高。然而,当深层土壤水分被林地降低至一定程度后,便会对根系吸水产生永久胁迫,而此时指数根系分布下模拟的林地蒸腾量便会出现偏高的现象。不同土壤分层的情景模拟表明,对于垂直方向上土壤水力学性质变异较大的深剖面,降低土壤分层会使模型低估土壤的持水能力,进而高估地下水补给量。因此,在分析、模拟深剖面水文过程时,要重视根系和土壤分层对水文过程的影响。综上所述,深层土壤根系吸水是黄土高原林地水循环的重要组成部分,对于林地蒸腾耗水、土壤水储量、林地水分胁迫和土壤碳输入等生态水文过程均具有重要影响。因此,在今后的森林生态水文研究中应给予高度重视。(本文来源于《西北农林科技大学》期刊2019-04-01)

严加坤,严荣,汪亚妮[5](2019)在《外源茉莉酸甲酯对盐胁迫下玉米根系吸水的影响》一文中研究指出【目的】茉莉酸作为一种重要的植物激素在植物应答生物胁迫及非生物胁迫中起到重要作用。然而以往针对茉莉酸提高植物非生物胁迫的研究主要集中在茉莉酸提高植物抗氧化能力来提高植物抗性的研究,而其对植物水分平衡的影响研究相对较少。【方法】通过水培(1/4 Hoaglands营养液)条件下外源施加茉莉酸甲酯(1μmol/L)处理解析短期(2 h)盐(100 mmol/L)胁迫下茉莉酸对玉米根系吸水能力的影响,以期为玉米抗盐碱育种提供理论依据。【结果】外源施加茉莉酸甲酯分别提高盐胁迫下根系生物量41.32%,地上部生物量40.69%;同时,对生理指标分析发现:外源施用茉莉酸甲酯能有效提高盐胁迫下玉米净光合速率(47.48%)、蒸腾速率和叶水势及叶相对含水量等叶片相关生理指标;盐胁迫下玉米高根系水力学导度(相比非茉莉酸处理提高41.60%)对维持高蒸腾速率与叶相对含水量起到重要作用。此外,通过外源氯化汞抑制试验表明茉莉酸甲酯处理下高的根系水力学导度与水通道蛋白活性显着相关。【结论】盐胁迫下茉莉酸能够通过调控玉米根系水通道蛋白活性提高玉米根系水力学导度从而提高玉米根系吸水能力进而维持茉莉酸处理下玉米高的叶面蒸腾速率及高的叶片相对含水量。(本文来源于《广东农业科学》期刊2019年01期)

杜俊杉,马英,胡晓农,童菊秀,张宝忠[6](2018)在《基于双稳定同位素和MixSIAR模型的冬小麦根系吸水来源研究》一文中研究指出灌溉和施肥措施对农田水文循环具有重要影响,根系吸水是联系植物蒸腾和土壤水分运动的关键水文过程,定量识别灌溉施肥影响下作物根系吸水来源对农业用水优化管理具有重要意义。氘氧稳定同位素(D和18O)是追溯农田水分运移过程的理想天然示踪剂。基于2013—2015年北京市典型农田不同灌溉施肥处理冬小麦水分运移试验,利用D和18O双稳定同位素和MixSIAR贝叶斯混合模型,量化冬小麦主要根系吸水深度及其贡献比例,阐明作物水分来源的季节变化及不同处理间的差异,分析根系吸水与土壤水分分布变化的相互关系。研究结果表明:两季冬小麦返青-拔节、拔节-抽穗、抽穗-灌浆和灌浆-收获期主要根系吸水深度均值分别为0—20 cm(67.0%)、20—70 cm(42.0%)、0—20 cm(38.7%)和20—70 cm(34.9%),但季节变化差异显着,2014季主要吸水深度随作物的生长发育而逐渐增加,2015季则主要集中于浅层土壤(0—70 cm)。返青-抽穗期仅灌水20 mm或施肥105 kg/hm2N促使拔节-抽穗期深层(70—200 cm)土壤水分利用率平均增加29%,而前期充分灌水且大量施肥(≥当地施肥量210 kg hm-2N)时拔节-抽穗期根系吸水深度为土壤表层0—20 cm。在干旱少雨的冬小麦生长季内作物吸水来源与土壤水分消耗变化基本一致。(本文来源于《生态学报》期刊2018年18期)

陈立,王文科,赵明,王周锋[7](2018)在《宏观根系吸水补偿模型研究进展》一文中研究指出根系吸水模型是研究植被耗水规律的关键要素,尤其在干旱-半干旱地区,土壤经常出现水分胁迫状态,使得根系吸水过程更为复杂。为准确描述根系的吸水过程,吸水补偿模型在1989年被概念化并成为一个重要的研究方向,国外进行了大量的研究探索,而国内在该领域鲜有研究。虽然根系吸水补偿模型已取得一定的进展,但其模型本身仍然存在一定的物理缺陷,因此,总结并综合分析根系吸水补偿模型发展历程,指出补偿吸水模型忽视了水分胁迫抑制根系吸水的物理机制,以及植物胁迫指数判定是否进行吸水补偿有一定局限性。在此基础上,提出根系吸水补偿模型应考虑潜在蒸腾量和土壤可利用水量供需关系、植物根系生长环境,补偿模型应耦合植物胁迫函数、土壤水分分布及地下水动态特征。(本文来源于《南水北调与水利科技》期刊2018年05期)

刘柯渝,司炳成,张志强[8](2018)在《黄土高原不同林龄苹果树根系吸水策略对降水的响应》一文中研究指出在黄土高原陕西省长武塬区选取品种和管理手段均相同的3种林龄果园(尚未结果的5年幼龄果园、已结果的8年初果园和13年壮果园)苹果树,采用空间换时间的试验设计,分别于2015年7月12日和8月19日对0—500cm深度土壤及对应取样处的苹果树枝条取样,测定土样和枝条样中水分的稳定氢氧同位素,并利用贝叶斯模型量化降水前后不同土层对苹果林耗水的贡献。结果表明:(1)不同林龄苹果树降雨前后的主要水分来源深度不同。干旱时,13年壮龄果树的主要吸水深度比5年和8年果树深;而生长旺季,雨季降水只能补充未挂果的5年幼龄果园土壤水分消耗,即使降水量很大,也无法满足已经开始挂果的8年和13年果园土壤水分消耗。(2)在干旱期,5年和8年果树50%以上的水分来自表层0—100cm土壤,而13年果树50%的水分来自100—300cm土层。而降水后,5年和8年果树的主要水分来源变为100—300cm土层,贡献值在40%左右;13年果园的主要水分贡献层为0—100cm土层,贡献了近50%的水分。(3)3种林龄果树根系对300—500cm土层土壤水分的吸收对降雨的响应非常弱,降雨前后贡献率始终保持在30%。(本文来源于《水土保持学报》期刊2018年04期)

王璞,孙西欢,马娟娟,郭向红[9](2018)在《深层灌水下冬小麦根系分布及吸水能力的研究》一文中研究指出为研究不同深度灌水条件下冬小麦根系的分布规律及吸水能力,设置5个灌水控制因子,分别为地面灌溉、根系分布深度的40%、60%、75%、90%进行试验研究。结果表明:从地表向地下延伸,冬小麦的根长密度大致呈指数分布;深层灌水显着增加100 cm以下土层冬小麦的根量,各时期100 cm以下冬小麦的根长密度大小关系为T5>T4>T3>T2>T1;冬小麦的蒸腾强度(总吸水速率)随灌水深度的增加呈现先增大后减小的趋势,灌水深度为根系分布深度的75%时吸水速率最大;单位根长潜在根系吸水速率(系数Crp)在冬小麦的生育期内出现先增大后减小的变化趋势,抽穗期出现最大值;不同时期各处理冬小麦单位根长的吸水速率表现为:返青期和拔节期各处理间差异较小,抽穗期各处理间差异较大,且大小规律为T2>T1>T3>T4>T5,灌浆期各处理间大小关系为T1>T2>T3>T4>T5,单位根长潜在根系吸水速率在地面灌处理下最大。(本文来源于《节水灌溉》期刊2018年07期)

忽雪琦,李东阳,严加坤,张岁岐[10](2018)在《干旱胁迫下外源茉莉酸甲酯对玉米幼苗根系吸水的影响》一文中研究指出茉莉酸类化合物作为环境信号分子,不仅参与植物生长发育的调控,同时受到环境胁迫的诱导,参与植物对逆境胁迫的响应和防御。本研究以北方广泛种植的玉米品种‘郑单958’为材料,通过对根系外源施加茉莉酸甲酯的方式,探究干旱胁迫下茉莉酸甲酯对玉米幼苗抗旱性以及根系吸水的影响。结果表明,外源茉莉酸甲酯可提高玉米幼苗光合速率、蒸腾作用和气孔导度,增强抗氧化酶活性,降低H_2O_2和丙二醛的含量,从而缓解干旱胁迫对植株造成的损伤。通过测定根系水导、氯化汞处理的蒸腾速率的变化以及水通道蛋白的表达量,发现干旱胁迫下外源茉莉酸甲酯可增强根系水通道蛋白的表达,进而增强玉米幼苗的根系吸水能力,从而缓解干旱胁迫造成的叶片水分含量的下降和水势的降低,提高了玉米幼苗的抗旱性。(本文来源于《植物生理学报》期刊2018年06期)

根系吸水论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

在土壤根区水分运动规律的研究中,通常以土壤水热耦合模型来定量描述和预测土壤水分变化规律,以根系吸水模型来模拟作物根区根系吸水机理及过程。西藏高寒地区低压低氧、强辐射、近地层冷热交换频繁,加之土层稀薄,浅层土壤水转化过程复杂,作物生长受水热胁迫影响较为明显,作物根区的水热耦合作用对根系吸水及能量传输和物质运移影响显着。为了进一步探求西藏地区特殊水热条件下的根区水热运移机理,摸清西藏高寒区作物根系吸水规律,就国内外土壤水热耦合模型和根系吸水模型的相关研究做了综述,针对西藏地区特有的水热条件,建议将水热耦合模型与根系吸水模型结合应用,构建考虑水热耦合因素的根系吸水模型,以更好地适应当地实际,揭示根系土壤水分运动规律。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

根系吸水论文参考文献

[1].莫凡,黄忠华,罗维钢,农梦玲.基于土壤墒情变化的甘蔗关键生长期根系吸水动态和缺水胁迫诊断研究[J].西南农业学报.2019

[2].刘伟,徐冰,汤鹏程,李泽坤.土壤水热与根系吸水模型研究进展及其在西藏研究展望[J].水资源与水工程学报.2019

[3].郭飞,高磊,马娟娟.基于氢氧稳定同位素的矮砧苹果树根系吸水深度研究[J].节水灌溉.2019

[4].李会杰.黄土高原林地深层土壤根系吸水过程及其对水分胁迫和土壤碳输入的影响[D].西北农林科技大学.2019

[5].严加坤,严荣,汪亚妮.外源茉莉酸甲酯对盐胁迫下玉米根系吸水的影响[J].广东农业科学.2019

[6].杜俊杉,马英,胡晓农,童菊秀,张宝忠.基于双稳定同位素和MixSIAR模型的冬小麦根系吸水来源研究[J].生态学报.2018

[7].陈立,王文科,赵明,王周锋.宏观根系吸水补偿模型研究进展[J].南水北调与水利科技.2018

[8].刘柯渝,司炳成,张志强.黄土高原不同林龄苹果树根系吸水策略对降水的响应[J].水土保持学报.2018

[9].王璞,孙西欢,马娟娟,郭向红.深层灌水下冬小麦根系分布及吸水能力的研究[J].节水灌溉.2018

[10].忽雪琦,李东阳,严加坤,张岁岐.干旱胁迫下外源茉莉酸甲酯对玉米幼苗根系吸水的影响[J].植物生理学报.2018

论文知识图

细胞压力探针[23]根压力探针蛭石培养试验正常供水和干旱胁迫下氮素形态对玉米...植株水分传输示意正常供水和干旱胁迫下氮素形态对玉米...

标签:;  ;  ;  ;  ;  ;  ;  

根系吸水论文_莫凡,黄忠华,罗维钢,农梦玲
下载Doc文档

猜你喜欢