两类具变指数Laplacian项的非线性发展方程的适定性研究

两类具变指数Laplacian项的非线性发展方程的适定性研究

论文摘要

本文主要利用位势井方法和凹函数方法及泛函分析理论,针对具m-Laplacian的非线性抛物方程和具-Laplacian的非线性抛物方程的定解问题的适定性进行研究,以期分析上述两类问题的解关于初值的依赖性.本文在次临界初始能级、临界初始能级以及超临界初始能级下分别对上述两类方程定解的整体适定性进行研究.本文通过研究两类具变指数Laplacian项的非线性抛物方程,推广了具变指数Laplacian项在位势井理论中的应用,得到了具变指数Laplacian项的非线性发展方程定解的整体适定性,从而使得位势井理论得到进一步发展和完善.第二章针对一类具m-Laplacian的非线性抛物方程的初边值问题进行研究.该方程可用来模拟非线性扩散模型的动力行为及与线性扩散模型相关的退化特性.在次临界初始能级,借助两个不同的辅助函数证明具m-Laplacian的非线性抛物方程定解的有限时间爆破并估计爆破时间的上下界.然后通过对初值伸缩变换将次临界初始能级得到的所有结果平行地扩展到临界初始能级.在超临界初始能级,由于能量不再被位势井深所控制,不变集合将不再成立.课题通过对初始能量重新施加一个与初值有关的限制证明了不变集合,结合凹函数方法且引入新的辅助函数证明了方程定解的有限时间爆破并估计了爆破时间上下界.本章的研究意义是对具m-Laplacian项的非线性抛物方程的初边值问题的解的适定性质在全能级下进行全面的研究.第三章针对一类具m(x)-Laplacian的非线性抛物方程的初边值问题在三个不同的能级下对解的适定性进行研究.该方程被用来描述电流变流体的流动.借助经典的Faedo-Galerkin方法和有界性原理得到了解在次临界和临界能级下的整体存在性和唯一性.进一步,通过分析势能泛函和Nehari泛函之间的关系,得到了方程定解的渐近行为.借助位势井深和解的模之间的关系且利用凹函数方法,证明了该方程定解的有限时间爆破,在解有限时间爆破的基础上分别估计爆破时间.在超临界能级状态下,证明了解的有限时间爆破并且估计了爆破时间上下界.本章的研究意义是将具m(x)-Laplacian的非线性抛物方程的初边值问题解的整体适定性进行了系统化结构化的研究.

论文目录

  • 摘要
  • ABSTRACT
  • 第1章 绪论
  •   1.1 研究对象
  •   1.2 研究背景
  •     1.2.1 具m-Laplacian非线性抛物方程的研究背景
  •     1.2.2 具m(x)-Laplacian非线性抛物方程的研究背景
  •     1.2.3 位势井理论的研究背景
  •   1.3 文章章节安排
  • 第2章 m-Laplacian抛物方程的适定性
  •   2.1 预备知识
  • 0)  2.2 次临界初始能级J(u0
  •     2.2.1 次临界初始能级下的不变集合
  •     2.2.2 次临界初始能级下解的整体存在和唯一性
  •     2.2.3 次临界初始能级下解的渐近行为
  •     2.2.4 次临界初始能级下解的有限时间爆破及爆破时间估计
  • 0)=d状态下解的定性性质'>  2.3 临界初始能级J(u0)=d状态下解的定性性质
  •     2.3.1 临界初始能级下解的整体存在
  •     2.3.2 临界初始能级下解的渐近行为
  •     2.3.3 临界初始能级下解的有限时间爆破以及爆破时间估计
  •   2.4 超临界初始能级下解的有限时间爆破及爆破时间估计
  •   2.5 本章小结
  • 第3章 变指数Laplacian抛物方程的适定性
  •   3.1 预备知识
  • 0)  3.2 次临界初始能级J(u0
  •     3.2.1 次临界初始能级下的不变集合
  •     3.2.2 次临界初始能级情况下解的整体存在和唯一性
  •     3.2.3 次临界初始能级下解的渐近行为
  •     3.2.4 次临界初始能级下解的有限时间爆破及爆破时间的估计
  • 0)=d状态下解的定性性质'>  3.3 临界初始能级J(u0)=d状态下解的定性性质
  •     3.3.1 临界初始能级解的整体存在唯一性
  •     3.3.2 临界初始能级下解的渐近行为
  •     3.3.3 临界初始能级下解的有限时间爆破以及爆破时间估计
  •   3.4 超临界初始能级下解的有限时间爆破以及爆破时间估计
  •   3.5 本章小结
  • 结论
  • 参考文献
  • 攻读硕士学位期间发表的论文和取得的科研成果
  • 致谢
  • 文章来源

    类型: 硕士论文

    作者: 庞月

    导师: 徐润章

    关键词: 算子,非线性抛物方程,整体适定性,位势井

    来源: 哈尔滨工程大学

    年度: 2019

    分类: 基础科学

    专业: 数学

    单位: 哈尔滨工程大学

    分类号: O175

    总页数: 83

    文件大小: 8715K

    下载量: 26

    相关论文文献

    • [1].Gradient Estimates for p-Laplacian Lichnerowicz Equation on Noncompact Metric Measure Space[J]. Chinese Annals of Mathematics,Series B 2020(03)
    • [2].Equivalence Relation between Initial Values and Solutions for Evolution p-Laplacian Equation in Unbounded Space[J]. Communications in Mathematical Research 2020(01)
    • [3].Ordering Quasi-Tree Graphs by the Second Largest Signless Laplacian Eigenvalues[J]. Journal of Mathematical Research with Applications 2020(05)
    • [4].Existence of Solutions to Nonlinear Schr?dinger Equations Involving N-Laplacian and Potentials Vanishing at Infinity[J]. Acta Mathematica Sinica 2020(10)
    • [5].含偶圈图的Laplacian谱刻画[J]. 运筹学学报 2018(04)
    • [6].四阶p-Laplacian边值问题正解的存在性(英文)[J]. 数学季刊(英文版) 2018(04)
    • [7].The Existence of Semiclassical States for Some P-Laplacian Equation with Critical Exponent[J]. Acta Mathematicae Applicatae Sinica 2017(02)
    • [8].Soft Decision Based Gaussian-Laplacian Combination Model for Noisy Speech Enhancement[J]. Chinese Journal of Electronics 2018(04)
    • [9].具有奇性的Laplacian型方程周期正解的存在性[J]. 韩山师范学院学报 2016(06)
    • [10].Blow-up of p-Laplacian evolution equations with variable source power[J]. Science China(Mathematics) 2017(03)
    • [11].Solvability for a Coupled System of Fractional p-Laplacian Differential Equations at Resonance[J]. Communications in Mathematical Research 2017(01)
    • [12].The Existence of Nodal Solutions for the Half-Quasilinear p-Laplacian Problems[J]. Journal of Mathematical Research with Applications 2017(02)
    • [13].Coiflet solution of strongly nonlinear p-Laplacian equations[J]. Applied Mathematics and Mechanics(English Edition) 2017(07)
    • [14].Laplacian Energies of Regular Graph Transformations[J]. Journal of Donghua University(English Edition) 2017(03)
    • [15].Existence of Solutions to a p-Laplacian Equation with Integral Initial Condition[J]. Communications in Mathematical Research 2017(04)
    • [16].The Signless Laplacian Spectral Characterization of Strongly Connected Bicyclic Digraphs[J]. Journal of Mathematical Research with Applications 2016(01)
    • [17].Multiplicity for Nonlinear Elliptic Boundary Value Problems of p-Laplacian Type Without Ambrosetti-Rabinowitz Condition[J]. Acta Mathematicae Applicatae Sinica 2015(01)
    • [18].Existence of Solutions for a Four-point Boundary Value Problem with a p(t)-Laplacian[J]. Communications in Mathematical Research 2015(01)
    • [19].奇异Φ-Laplacian周期边值问题解的存在性[J]. 山东大学学报(理学版) 2015(08)
    • [20].单圈图的最小无号Laplacian谱展[J]. 华南师范大学学报(自然科学版) 2013(04)
    • [21].循环图的Laplacian谱展[J]. 数学杂志 2013(06)
    • [22].The Normalized Laplacian Spectrum of Pentagonal Graphs and Its Applications[J]. Journal of Mathematical Research with Applications 2019(04)
    • [23].Evolutionary p(x)-Laplacian Equation with a Convection Term[J]. Acta Mathematicae Applicatae Sinica 2019(03)
    • [24].Existence of Nonnegative Solutions for a Class of Systems Involving Fractional(p,q)-Laplacian Operators[J]. Chinese Annals of Mathematics,Series B 2018(02)
    • [25].一类p-Laplacian方程单侧全局区间分歧及应用[J]. 数学物理学报 2018(04)
    • [26].Energy and Laplacian of fractal interpolation functions[J]. Applied Mathematics:A Journal of Chinese Universities 2017(02)
    • [27].图的Normalized Laplacian多项式系数[J]. 集美大学学报(自然科学版) 2016(01)
    • [28].一类具有奇性p-Laplacian-Rayleigh方程的周期正解[J]. 韩山师范学院学报 2016(03)
    • [29].Homoclinic Solutions for a Prescribed Mean Curvature Lienard p-Laplacian Equation with a Deviating Argument[J]. Journal of Donghua University(English Edition) 2016(03)
    • [30].一类奇性的p-Laplacian-Rayleigh方程的周期正解的存在性[J]. 井冈山大学学报(自然科学版) 2016(04)

    标签:;  ;  ;  ;  

    两类具变指数Laplacian项的非线性发展方程的适定性研究
    下载Doc文档

    猜你喜欢