导读:本文包含了纳米竹叶论文开题报告文献综述及选题提纲参考文献,主要关键词:高纯竹叶碳苷黄酮,纳米材料,护肤功能因子,生物学功效
纳米竹叶论文文献综述
张宇靖,李云虹,姜春鹏,杨舒琪,韩建欣[1](2019)在《高纯竹叶碳苷黄酮纳米材料的护肤功效》一文中研究指出在采用B16黑素瘤细胞体外评价高纯竹叶碳苷黄酮复合纳米材料(H-BLFnp)美白作用的基础上,基于临床医学理论进行人体实验,应用系列皮肤测试仪器,对受试者使用试样前后的皮肤含水量、水分散失量、光泽度、明亮度、黑色素含量、皮肤弹性等生理指标进行了测定,考察H-BLFnp在保湿、美白、延缓衰老方面的功效。结果显示,以β-熊果苷为阳性对照,H-BLFnp对B16细胞增殖、胞内酪氨酸酶活性和黑色素合成均有显着的抑制作用(p<0.05),当H-BLFnp质量浓度为100 mg/L时,其抑制率分别达到45.14%、72.55%和54.01%,即其可通过降低酪氨酸酶活性、抑制黑素细胞增殖和黑色素生成达到美白功效;人体实验结果显示:H-BLFnp能显着提高皮肤的水分含量、皮肤弹性、明亮度和光泽度,降低皮肤黑色素含量和经皮水分散失。(本文来源于《精细化工》期刊2019年07期)
张宇靖[2](2019)在《高纯竹叶碳苷黄酮纳米粒子及其护肤功效研究》一文中研究指出本文以四个碳苷黄酮总量在90%以上的高纯竹叶碳苷黄酮制剂(H-BLF)为芯材,以芫根阴离子多糖(TP)为壁材,以ε-聚赖氨酸(ε-PL)为阳离子桥,采用离子交联法制成纳米混悬液,进而在γ-环糊精(γ-CD)的保护下、通过真空冷冻干燥得到高纯竹叶碳苷黄酮的纳米粒子(H-BLFnp),采用多种技术手段对其结构和性能进行表征;并分别采用体内外评价体系,对H-BLFnp的保湿、美白和延缓衰老的护肤功效进行研究。主要研究内容及结果汇总如下:(1)以高纯竹叶碳苷黄酮制剂(H-BLF;用HPLC法测得荭草苷、异荭草苷、牡荆苷、异牡荆苷四个竹叶特征性碳苷的总量合计≥90%)为芯材,采用离子交联法键合形成竹叶碳苷黄酮的纳米混悬液(H-BLFnd);采用正交试验得出其优化的制备工艺参数为:TP浓度3mg/mL,TP与H-BLF的质量比12:1(w/w),ε-PL浓度0.4 mg/mL,恒流泵流速300 mL/h。然后,在混悬液中添加8%(w/v)的Y-环糊精(γ-CD)作为冻干保护剂,经真空冷冻干燥得到高纯竹叶黄酮的纳米粒子(H-BLFnp)。H-BLFnp外观呈白色,粉体光洁平整,测得其包埋率为(92.39±0.34)%;复溶于水后平均粒径为(679.7±10.2)nm,分散系数(PDI)为0.349±0.004;表明H-BLFnp粒径分布均匀,分散度良好。(2)采用紫外光谱(UV)、红外光谱(FTIR)对H-BLFnp的结构进行表征,H-BLFnp的UV光谱呈现出典型的黄酮带I和带II吸收峰,FTIR图谱显示H-BLFnd已进入γ-CD的空腔中,形成了环糊精的包合物。采用差示扫描量热法(DSC)及热重分析法(TG)研究H-BLFnp的热稳定性,结果表明,相较于纳米混悬液(H-BLFnd),纳米粒子(H-BLFnp)的熔融温度提高了 7.91 ℃、热焓值增加了 38.36 J/g,分解温度从246℃提高至324℃;H-BLFnp表现了更高的热稳定性。(3)以甘油为阳性对照,在恒湿条件下测定H-BLFnp的保湿率;结果表明在第36h时H-BLFnp的保湿率显着高于甘油(p<0.05)。采用小鼠B16黑色素瘤细胞模型,以β-熊果苷为阳性对照,研究H-BLFnp对B16细胞体外培养过程中相关指标的影响;结果表明,H-BLFnp对B16细胞增殖、酪氨酸酶活性和黑色素生成均表现出浓度依赖的抑制作用,当H-BLFnp试样浓度为100 μg/mL时,抑制率分别为45.14%、72.55%和54.01%,均显着优于β-熊果苷(p<0.05)。小鼠皮肤刺激性和眼刺激性实验表明,H-BLFnp对皮肤及粘膜均无刺激作用,外用安全性高。(4)应用系列皮肤测试仪,对受试者使用含有5.0%H-BLFnp试样(人体涂抹量为2mg/cm2)前后的多项生理指标进行测定。结果表明,H-BLFnp能显着提高人体皮肤的水分含量、皮肤弹性、明亮度和光泽度,降低皮肤黑色素含量和经皮水分散失,表明H-BLFnp具有补水和减少水分散失、提高皮肤弹性、淡化色素和光泽皮肤的功效。综上所述,高纯竹叶碳苷黄酮纳米粒子(H-BLFnp)是一种组分天然、工艺绿色、亲水性好、性能稳定、安全无刺激的复合生物纳米材料,同时具有显着的保湿、美白和延缓衰老的生物学功效,可作为新型护肤功能因子,在日化产品(尤其是水润型产品)中具有良好的应用前景。(本文来源于《浙江大学》期刊2019-03-01)
张宇靖,赵镇雷,韩建欣,张英[3](2019)在《高纯竹叶碳苷黄酮复合纳米材料的制备及结构》一文中研究指出采用离子交联法,以高纯竹叶碳苷黄酮制剂(碳苷总质量分数>90%,记为H-BLF)和芫根阴离子多糖(TP)为原料,通过ε-聚赖氨酸(ε-PL)的阳离子桥键合制备了竹叶碳苷黄酮纳米混悬液(H-BLFnd),然后在混悬液中添加质量分数8%的γ-环糊精,经真空冷冻干燥得到纳米冻干粉(H-BLFnp),采用粒径分析、TEM、UV、FTIR、TG和DSC对其外观、性能、结构进行了表征。结果表明,H-BLFnp外观为白色粉状,表面光洁平整,色泽均匀,平均粒径为(679±10.2)nm,分散系数为0.349±0.004,包埋率为92.39%±0.34%。(本文来源于《精细化工》期刊2019年02期)
王楠[4](2017)在《具有美白和抑菌双重功效的竹叶黄酮纳米粒子》一文中研究指出本文以竹叶黄酮(BLF)为载药、芫根多糖(TP)为包材、ε-聚赖氨酸(ε-PL)为阳离子桥,采用纳米胶囊技术研制出竹叶黄酮纳米粒子(BLF/TP/ε-PL),并围绕美白功效和抑菌性能进行评价,以期得到天然、高效、安全的新型化妆品功能因子,并为竹叶黄酮和芫根多糖等天然产物在功能性化妆品中的高效应用提供理论基础与实践指导。主要研究内容和结论如下:(1)以TP和ε-PL为材料,采用离子交联法制备TP/ε-PL空载纳米粒子。以粒径和PDI分散指数为标准,经控制变量法对工艺条件进行初步优化。结果表明,当TP的浓度为2~4 mg/mL、ε-PL的浓度为1~2 mg/mL、TP/ε-PL的质量比为2:1时,得到的TP/ε-PL纳米粒子平均粒径为292.5±2.17nm,PDI分散指数为0.169±0.02,呈类球形或球形,形态规则,均匀分散,粒径分布集中,大小均一,可以作为负载竹叶黄酮的良好纳米载体。(2)以BLF为包埋对象,制备出负载BLF的竹叶黄酮纳米粒子。以粒径分布和对BLF的包埋率为指标,经单因素试验对制备工艺参数进行优化。结果表明:当壁材配比(TP:ε-PL)为5:1,壁芯材比例为15:1,壁材浓度为3mg/mL,恒流泵流速为200 mL/h时,制备得到的竹叶黄酮纳米粒子大小均匀规则,平均粒径在500~550nm之间,PDI分散指数为0.224±0.01,包埋率为45.27%。经工艺条件重复性考察得到RSD<2.0%,表明竹叶黄酮纳米粒子的制备工艺可行性高,重复性好,操作简单。(3)以小鼠B-16黑素瘤细胞为体外评价模型,用业界公认的美白因子熊果苷为阳性对照,研究竹叶黄酮纳米粒子对B16细胞体外培养过程中相关指标的影响,从而对其美白功效进行评价。结果表明:竹叶黄酮纳米粒子对B16细胞内酪氨酸酶活性、黑色素合成和细胞增殖均表现出浓度依赖的抑制作用,当样品的浓度为100μg/mL时,抑制率分别达到69.68%、62.35%和59.14%,各项指标均显着优于熊果苷(p<0.05)。同时,竹叶黄酮纳米粒子对B16细胞增殖抑制的IC50值大于对其黑素生成抑制的IC50值,表明其实际应用的安全性较高。(4)以此竹叶黄酮纳米粒子(BLF/TP/ε-PL)为研究对象,以革兰氏阴性菌大肠杆菌(Escherichia coli)和革兰氏阳性菌枯草芽孢杆菌(Bacillus subtilis)为供试菌种,采用牛津杯法,对其抑菌性能进行分析测试,并与ε-PL的抑菌效果相比较。结果表明:竹叶黄酮纳米粒子对大肠杆菌和枯草芽孢杆菌均有较强的抑制能力,最小抑菌浓度低于0.625mg/mL,且抑制效果呈现浓度依赖性;与同浓度的ε-PL相比,竹叶黄酮纳米粒子的抑菌效果略为逊色。综上所述,BLF/TP/ε-PL结构的竹叶黄酮纳米粒子成分天然,制备简单,性质稳定均一,同时具有较强的美白、抑菌功效及较高的使用安全性,具有作为可视同天然的化妆品功能因子(Cosmeceuticals)开发的潜力。(本文来源于《浙江大学》期刊2017-01-05)
罗俊杰[5](2013)在《竹叶状硼酸镁纳米材料的制备与表征》一文中研究指出以Mg(NO3)2.6H2O和Na2B4O7.10H2O为原料,采用水热法制备了竹叶状的硼酸镁纳米材料,用扫描电子显微镜和透射电子显微镜观察了产物的形貌,用电子散射能谱分析仪和X射线粉末衍射仪对产物的成分以及物相进行了表征.结果表明产物几乎全是竹叶状纳米结构,纯度与产量均较高,形貌和尺寸比较均匀,成分为单斜晶系的MgBO2(OH).(本文来源于《鲁东大学学报(自然科学版)》期刊2013年01期)
宫娇娇,叶美丹,林昌健[6](2010)在《竹叶/纳米管阵列二氧化钛复合膜光电解水制氢》一文中研究指出利用太阳能光电化学或光催化分解水制氢是最具吸引力的一种可再生能源途径,其中以二氧化钛纳米管阵列作为催化剂光电解水制备氢气,引起了世界各国研究者的广泛关注。本文通过电化学方(本文来源于《中国化学会第27届学术年会第10分会场摘要集》期刊2010-06-20)
武祥,隋解和,蔡伟[7](2008)在《竹叶状ZnS纳米带的生成与表征》一文中研究指出通过无催化物理热蒸发ZnS粉末的方法成功地制备了一种新颖的竹叶状ZnS纳米带。X射线衍射分析和扫描电镜透射电子显微镜,用来对ZnS生长物进行表征,检测显示,所制得的竹叶状纳米带的厚度50~100nm,度宽500~600nm,长度数十微米。透射电镜和选区电子衍射花样表明,制备的纳米带是单晶六角纤锌矿结构。样品的光学性能显示在424nm处有一个强烈的蓝光发射,这种发射是由于氧空位和其他表面态造成的。同时对纳米带的生长机制作了论述。(本文来源于《固体电子学研究与进展》期刊2008年02期)
高海永,庄惠照,薛成山,王书运,董志华[8](2004)在《竹叶状GaN纳米带的制备》一文中研究指出为了制备GAN纳米带,用射频磁控溅射法在Si(111)衬底上先溅射ZnO中间层,接着溅射Ga2O3,然后ZnO/Ga2O3膜在开管炉中1000℃下常压通氨气进行氨化。在氨气气氛中ZnO在高温下挥发,借助于ZnO挥发的帮助,Ga2O3与NH3反应自组装生成GaN纳米带。XRD分析结果表明GaN纳米带为六方纤锌矿结构,利用SEM观测GaN纳米带具有竹叶状形貌,PL谱测量发现了位于370nm处和460nm处的室温光致发光峰。(本文来源于《电子元件与材料》期刊2004年09期)
纳米竹叶论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文以四个碳苷黄酮总量在90%以上的高纯竹叶碳苷黄酮制剂(H-BLF)为芯材,以芫根阴离子多糖(TP)为壁材,以ε-聚赖氨酸(ε-PL)为阳离子桥,采用离子交联法制成纳米混悬液,进而在γ-环糊精(γ-CD)的保护下、通过真空冷冻干燥得到高纯竹叶碳苷黄酮的纳米粒子(H-BLFnp),采用多种技术手段对其结构和性能进行表征;并分别采用体内外评价体系,对H-BLFnp的保湿、美白和延缓衰老的护肤功效进行研究。主要研究内容及结果汇总如下:(1)以高纯竹叶碳苷黄酮制剂(H-BLF;用HPLC法测得荭草苷、异荭草苷、牡荆苷、异牡荆苷四个竹叶特征性碳苷的总量合计≥90%)为芯材,采用离子交联法键合形成竹叶碳苷黄酮的纳米混悬液(H-BLFnd);采用正交试验得出其优化的制备工艺参数为:TP浓度3mg/mL,TP与H-BLF的质量比12:1(w/w),ε-PL浓度0.4 mg/mL,恒流泵流速300 mL/h。然后,在混悬液中添加8%(w/v)的Y-环糊精(γ-CD)作为冻干保护剂,经真空冷冻干燥得到高纯竹叶黄酮的纳米粒子(H-BLFnp)。H-BLFnp外观呈白色,粉体光洁平整,测得其包埋率为(92.39±0.34)%;复溶于水后平均粒径为(679.7±10.2)nm,分散系数(PDI)为0.349±0.004;表明H-BLFnp粒径分布均匀,分散度良好。(2)采用紫外光谱(UV)、红外光谱(FTIR)对H-BLFnp的结构进行表征,H-BLFnp的UV光谱呈现出典型的黄酮带I和带II吸收峰,FTIR图谱显示H-BLFnd已进入γ-CD的空腔中,形成了环糊精的包合物。采用差示扫描量热法(DSC)及热重分析法(TG)研究H-BLFnp的热稳定性,结果表明,相较于纳米混悬液(H-BLFnd),纳米粒子(H-BLFnp)的熔融温度提高了 7.91 ℃、热焓值增加了 38.36 J/g,分解温度从246℃提高至324℃;H-BLFnp表现了更高的热稳定性。(3)以甘油为阳性对照,在恒湿条件下测定H-BLFnp的保湿率;结果表明在第36h时H-BLFnp的保湿率显着高于甘油(p<0.05)。采用小鼠B16黑色素瘤细胞模型,以β-熊果苷为阳性对照,研究H-BLFnp对B16细胞体外培养过程中相关指标的影响;结果表明,H-BLFnp对B16细胞增殖、酪氨酸酶活性和黑色素生成均表现出浓度依赖的抑制作用,当H-BLFnp试样浓度为100 μg/mL时,抑制率分别为45.14%、72.55%和54.01%,均显着优于β-熊果苷(p<0.05)。小鼠皮肤刺激性和眼刺激性实验表明,H-BLFnp对皮肤及粘膜均无刺激作用,外用安全性高。(4)应用系列皮肤测试仪,对受试者使用含有5.0%H-BLFnp试样(人体涂抹量为2mg/cm2)前后的多项生理指标进行测定。结果表明,H-BLFnp能显着提高人体皮肤的水分含量、皮肤弹性、明亮度和光泽度,降低皮肤黑色素含量和经皮水分散失,表明H-BLFnp具有补水和减少水分散失、提高皮肤弹性、淡化色素和光泽皮肤的功效。综上所述,高纯竹叶碳苷黄酮纳米粒子(H-BLFnp)是一种组分天然、工艺绿色、亲水性好、性能稳定、安全无刺激的复合生物纳米材料,同时具有显着的保湿、美白和延缓衰老的生物学功效,可作为新型护肤功能因子,在日化产品(尤其是水润型产品)中具有良好的应用前景。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
纳米竹叶论文参考文献
[1].张宇靖,李云虹,姜春鹏,杨舒琪,韩建欣.高纯竹叶碳苷黄酮纳米材料的护肤功效[J].精细化工.2019
[2].张宇靖.高纯竹叶碳苷黄酮纳米粒子及其护肤功效研究[D].浙江大学.2019
[3].张宇靖,赵镇雷,韩建欣,张英.高纯竹叶碳苷黄酮复合纳米材料的制备及结构[J].精细化工.2019
[4].王楠.具有美白和抑菌双重功效的竹叶黄酮纳米粒子[D].浙江大学.2017
[5].罗俊杰.竹叶状硼酸镁纳米材料的制备与表征[J].鲁东大学学报(自然科学版).2013
[6].宫娇娇,叶美丹,林昌健.竹叶/纳米管阵列二氧化钛复合膜光电解水制氢[C].中国化学会第27届学术年会第10分会场摘要集.2010
[7].武祥,隋解和,蔡伟.竹叶状ZnS纳米带的生成与表征[J].固体电子学研究与进展.2008
[8].高海永,庄惠照,薛成山,王书运,董志华.竹叶状GaN纳米带的制备[J].电子元件与材料.2004