论文摘要
函数空间上的算子理论是算子论的重要分支,其核心是研究算子的性质和符号函数性质之间的关系并利用算子的性质来解决具体的问题.本文主要考虑模型空间上截断Toeplitz算子的可约性以及相关的换位von Neumann代数.全文安排如下:第一章简要介绍了函数空间算子论的背景,预备知识及我们所关注问题的发展现状.第二章给出了模型空间上符号为二阶Blaschke积B2的截断Toeplitz算子AAB2的可约性的一个充要条件.更进一步,如果A2可约,则其在任意给定的非平凡约化子空间M上的限制都存在某个内函数Φ使得AAB2,Im酉等价于A.并且我们给出Φ的具体形式.第三章,我们刻画了模型空间上符号为三阶Blaschke积B3的截断Toeplitz算子AAB3,的可约性.第四章,我们给出了相对Blaschke积的概念并且用这一概念来刻画符号为二阶和三阶Blaschke积的截断Toeplitz算子ABnθ(n=2,3)的可约性.特别地,当A-nθ(n=2,3)可约时,利用相对Blaschke积的阶数对换位von Neumann代数{A-nθ,(A-nθ)*}’(n=2,3)进行分类.
论文目录
文章来源
类型: 博士论文
作者: 李宇飞
导师: 卢玉峰
关键词: 模型空间,截断算子,约化子空间,相对积
来源: 大连理工大学
年度: 2019
分类: 基础科学
专业: 数学
单位: 大连理工大学
分类号: O177
总页数: 73
文件大小: 2259K
下载量: 26
相关论文文献
- [1].Commutators and Semi-commutators of Monomial Toeplitz Operators on the Pluriharmonic Hardy Space[J]. Chinese Annals of Mathematics,Series B 2020(05)
- [2].Algebraic Properties of Dual Toeplitz Operators on Harmonic Hardy Space over Polydisc[J]. Journal of Mathematical Research with Applications 2016(06)
- [3].Positivity of Toeplitz Operators on Harmonic Bergman Space[J]. Acta Mathematica Sinica 2016(02)
- [4].Positivity of Fock Toeplitz Operators via the Berezin Transform[J]. Chinese Annals of Mathematics,Series B 2016(04)
- [5].The Commutants of the Toeplitz Operators with Radial Symbols on the Pluriharmonic Bergman Space[J]. Journal of Mathematical Research with Applications 2015(01)
- [6].Algebraic Properties of Toeplitz Operators on Cutoff Harmonic Bergman Space[J]. Journal of Mathematical Research with Applications 2020(02)
- [7].基于均值的Toeplitz矩阵填充的子空间算法[J]. 计算数学 2017(02)
- [8].求解Toeplitz线性系统的迭代方法[J]. 沈阳大学学报(自然科学版) 2018(05)
- [9].Zero Products and Finite Rank of Toeplitz Operators on the Harmonic Bergman Space[J]. Journal of Mathematical Research with Applications 2017(03)
- [10].Dual Toeplitz Operators on the Unit Ball[J]. Journal of Mathematical Research with Applications 2017(06)
- [11].Algebraic Properties of Toeplitz and Small Hankel Operators on the Harmonic Bergman Space[J]. Acta Mathematica Sinica(English Series) 2014(08)
- [12].Commuting Hankel and Toeplitz Operators on the Hardy Space of the Bidisk[J]. 数学研究与评论 2010(02)
- [13].A Gohberg-Semencul Type Formula for the Inverse of Conjugate-Toeplitz Matrix and Applications[J]. Acta Mathematicae Applicatae Sinica 2018(02)
- [14].Commuting Dual Toeplitz Operators on the Harmonic Dirichlet Space[J]. Acta Mathematica Sinica 2016(09)
- [15].Algebraic Properties of Toeplitz Operators on the Harmonic Bergman Space[J]. Journal of Mathematical Research with Applications 2016(04)
- [16].Commuting Toeplitz Operators on the Hardy Space of the Polydisk[J]. Acta Mathematica Sinica 2015(04)
- [17].Schatten-p Class(0
- [18].Toeplitz Operators with Unbounded Symbols on Segal-Bargmann Space[J]. Journal of Mathematical Research with Applications 2015(03)
- [19].Dual Toeplitz Operators on the Sphere[J]. Acta Mathematica Sinica 2013(09)
- [20].Hyponormal Toeplitz Operators on the Polydisk[J]. Acta Mathematica Sinica 2012(02)
- [21].Completely Non-Normal Toeplitz Operators[J]. 数学研究与评论 2011(04)
- [22].离散交换群上Toeplitz算子的代数性质(英文)[J]. 数学研究与评论 2008(02)
- [23].Toeplitz方程组的反称化快速算法[J]. 周口师范学院学报 2019(05)
- [24].Bounded and Compact Toeplitz Operators on the Weighted Bergman Space over the Bidisk[J]. Acta Mathematica Sinica 2014(01)
- [25].Product and Commutativity of Slant Toeplitz Operators[J]. 数学研究及应用 2013(01)
- [26].近似三对角Toeplitz方程组的并行化实现[J]. 吉林农业 2013(03)
- [27].Schatten p-Class Toeplitz Operators with Unbounded Symbols on Pluriharmonic Bergman Space[J]. Acta Mathematica Sinica 2013(12)
- [28].Invertible Toeplitz Operators Products on the Bergman Space of the Polydisk[J]. 数学研究及应用 2012(05)
- [29].Commutant of Analytic Toeplitz Operators on the Bergman Space[J]. Acta Mathematica Sinica(English Series) 2010(12)
- [30].Toeplitz and Hankel Products on Bergman Spaces of the Unit Ball[J]. Chinese Annals of Mathematics 2009(03)