熔融拉锥型微结构光纤传感器的制备及应用研究

熔融拉锥型微结构光纤传感器的制备及应用研究

论文摘要

微结构光纤传感器指用现代先进制造技术,比如微加工或者微操作的方法,在普通光纤上制作出微米级结构,或者在微纳光纤上制作的光纤传感器。微结构光纤传感器结构灵活多样,通过适当的设计可以得到各种所需要的光学特性。随着研究的深入,各种各样的新奇微结构光纤传感器不断出现。微结构光纤传感器的应用研究也日渐丰富,逐渐延伸到光谱学、非线性光学、生物医学等科技领域。本文基于微加工或者微操作的方法,设计并制作了基于熔接和拉锥技术的两种干涉型微结构光纤传感器和一种基于光纤光镊的微结构光纤传感器,从理论、实验和应用三个方面对这些器件进行研究,拓展了微结构光纤传感器在光纤传感和光纤通信领域的应用范围。本论文主要研究内容包括:设计并研制了可以同时测量折射率和温度的基于法布里-珀罗(F-P)多腔干涉的微结构光纤传感器。传感头由普通单模光纤和实芯光子晶体光纤熔接而成,包含了空气腔、单模光纤(SMF)腔和光子晶体光纤(PCF)腔。分析了传感器反射光谱的特性,对反射谱进行低通滤波,获得波谷波长;同时对反射谱进行快速傅里叶(FFT)变换,获得幅度峰值;研究了波谷波长的偏移和幅度峰值与传感器周围介质的温度和折射率的关系,获得系数矩阵,从而实现对温度和折射率的同时传感。在折射率为1.341.43的范围内,FFT后的幅度灵敏度为5.30/RIU,波长灵敏度为8.46×10-1nm/RIU。对于温度测量,获得了6.80×10-4/°C的幅值灵敏度和2.48×10-3nm/°C的波长灵敏度。该传感器制作简单、成本低、温度补偿效果好,可进行双参数测量,适合于实际应用。设计并研制了基于熔接和拉锥技术的可同时用于折射率和温度测量的微结构光纤马赫-曾德(M-Z)混合干涉型传感器。这里的干涉除了由纤芯基模经不同传输路径引起之外,还包括包层模和纤芯模之间的干涉。采用基于快速傅里叶变换分析的解调方法,研究了传感系统的光学特性。通过带通和低通滤波器提取由不同干涉形成的干涉光谱。研究了两种干涉光谱中波谷随折射率和温度的漂移特性,得到了可同时测量两个参数的传感系统系数矩阵。折射率灵敏度分别为55.22±3.32nm/RIU和55.84±4.33nm/RIU,温度灵敏度分别为0.045±0.004nm/°C和0.143±0.016nm/°C。该传感器具备结构简单、制作便捷、器件尺寸紧凑、可同时传感等优点。设计并研制了一种新型微结构光纤尖端型传感器,该结构中内嵌的中空锥形腔可以使光纤尖端附近的光重新聚焦。通过时域有限差分(FDTD)方法模拟了尖端的电场分布,探讨了腔体几何形状对电场分布的影响,发现腔体填充紫外胶等高折射率介质后,电场显著增强。计算了微球处于不同电场中的受力,获得了微粒运动的平均速度与所施加的激光功率间特定的非线性关系。这种关系可应用于微流体技术来测量微流体的速度,散射力与流体力之间的平衡可以用来研究粒子的非侵入性迁移。微结构光纤尖端制作方便、可控,且其特殊的内置空腔结构使得填充高折射率介质形成可调三维势阱成为可能。

论文目录

  • 摘要
  • Abstract
  • 第1章 绪论
  •   1.1 微结构光纤传感器的发展历程及分类
  •     1.1.1 干涉型微结构光纤传感器
  •     1.1.2 基于光纤光栅的微结构光纤传感器
  •     1.1.3 谐振型微结构光纤传感器
  •     1.1.4 基于光捕获效应的微结构光纤传感器
  •   1.2 微结构光纤传感器国内外研究现状
  •     1.2.1 F-P干涉型微结构光纤传感器的国内外研究现状
  •     1.2.2 M-Z干涉型微结构光纤传感器的国内外研究现状
  •     1.2.3 基于光纤光镊的微结构光纤传感器国内外研究现状
  •   1.3 课题来源及本文主要研究内容、研究意义
  •     1.3.1 课题来源
  •     1.3.2 课题研究目的和意义
  •     1.3.3 课题主要研究内容
  • 第2章 微结构光纤传感器的制备方法及基本原理
  •   2.1 微结构光纤传感器的一般制备方法
  •     2.1.1 熔接和热拉伸法
  •     2.1.2 化学腐蚀法
  •     2.1.3 聚焦离子束(Focused Ion Beam,FIB)刻蚀法
  •     2.1.4 涂敷法
  •     2.1.5 飞秒激光加工法
  •     2.1.6 其他加工方法
  •   2.2 F-P干涉式微结构光纤传感器的基本原理
  •   2.3 M-Z干涉式微结构光纤传感器的基本原理
  •   2.4 光纤光镊式微结构光纤传感器的基本原理
  •     2.4.1 基于光学辐射压力光镊技术的原理
  •     2.4.2 光纤光镊式微结构光纤传感器光场计算模型
  •     2.4.3 光纤光镊式微结构光纤传感器光学捕获力的计算
  • 第3章 基于多腔F-P干涉的微结构光纤传感器
  •   3.1 前言
  •   3.2 基于多腔F-P干涉的微结构光纤传感器的理论建模
  •   3.3 基于多腔F-P干涉微结构光纤传感器制作流程
  •   3.4 折射率及温度双参数测量
  •   3.5 小结
  • 第4章 基于M-Z干涉的包含空气腔的微结构光纤传感器
  •   4.1 前言
  •   4.2 基于M-Z干涉的微结构光纤传感器的理论建模
  •   4.3 基于M-Z干涉的微结构光纤传感器的制备
  •   4.4 折射率及温度双参数测量
  •   4.5 小结
  • 第5章 基于光纤光镊的微结构光纤传感器
  •   5.1 引言
  •   5.2 基于光纤光镊的微结构光纤传感器的制作及结构
  •   5.3 微结构光纤传感器光场的分布
  •     5.3.1 微结构光纤尖端的光场模拟
  •     5.3.2 传感头的优化
  •   5.4 基于光纤光镊的微结构光纤尖端在微操控中的应用
  •     5.4.1 光学力的计算
  •     5.4.2 包含空腔的微结构光纤尖端在微操控中的应用
  •     5.4.3 镀银膜微结构光纤尖端在微操控中的应用
  •   5.5 小结
  • 第6章 总结与展望
  •   6.1 论文工作总结
  •   6.2 创新性成果
  •   6.3 后续工作展望
  • 参考文献
  • 在读期间发表的学术论文与研究成果
  • 致谢
  • 文章来源

    类型: 博士论文

    作者: 倪小琦

    导师: 王鸣

    关键词: 光纤传感,微结构,法珀干涉,干涉,光纤光镊

    来源: 南京师范大学

    年度: 2019

    分类: 基础科学,信息科技

    专业: 物理学,无线电电子学,自动化技术

    单位: 南京师范大学

    基金: 国家自然科学基金面上项目(No:91123015),《基于混合型光纤干涉的微纳米测量技术的研究》,2012-2014,国家自然科学基金面上项目(No:61178044),《胶体晶体微结构光纤的制备和光学特性研究》,2012-2015,国家自然科学基金项目(No:61307108),《基于偏振依赖损耗特性分析的光纤光栅扭转传感器研究》,2014-2016,江苏省高校自然科学研究基金项目(No:16KJB510017),《基于金属表面等离激元的光纤微结构传感技术研究》,2016-2018

    分类号: TN253;TP212

    DOI: 10.27245/d.cnki.gnjsu.2019.000001

    总页数: 103

    文件大小: 5276K

    下载量: 364

    相关论文文献

    • [1].微结构光纤的研究进展及展望[J]. 激光与光电子学进展 2019(17)
    • [2].基于硫化物微结构光纤的超连续谱数值分析[J]. 光通信研究 2016(04)
    • [3].基于碲酸盐微结构光纤的超连续光源[J]. 发光学报 2014(11)
    • [4].高强度硫系玻璃微结构光纤研究[J]. 光电子.激光 2013(03)
    • [5].反常色散锥形微结构光纤中高效率脉冲压缩研究[J]. 物理学报 2010(07)
    • [6].材料填充微结构光纤光栅传感特性研究[J]. 光电子技术 2011(03)
    • [7].聚合物封装的纵向微结构光纤分布式压力传感系统[J]. 红外与激光工程 2016(08)
    • [8].全固态大模面积色散平坦微结构光纤研究[J]. 现代商贸工业 2019(07)
    • [9].负曲率空心微结构光纤的中红外传输性质[J]. 天津科技 2016(05)
    • [10].基于空气悬浮芯微结构光纤的高灵敏度荧光检测系统[J]. 中国激光 2018(05)
    • [11].微结构光纤在全光信号处理应用中的新进展[J]. 光学与光电技术 2010(04)
    • [12].新型微结构光纤超声波传感监测系统的设计[J]. 光通信技术 2015(02)
    • [13].紫外纯石英空芯微结构光纤的研究进展[J]. 光通信技术 2018(03)
    • [14].微结构光纤传感器光纤探针灵敏度的分析[J]. 仪表技术与传感器 2013(08)
    • [15].碲化物微结构光纤应用于中红外超连续谱的产生[J]. 红外与激光工程 2011(02)
    • [16].金属丝微结构光纤的研究进展[J]. 激光与光电子学进展 2011(11)
    • [17].大模场面积掺镱微结构光纤的制备与激光性能(英文)[J]. 中国激光 2014(12)
    • [18].八边形空芯微结构光纤的制备和特性分析[J]. 应用激光 2014(04)
    • [19].支持22个轨道角动量模式的低平坦色散微结构光纤[J]. 光学学报 2018(04)
    • [20].基于拉曼光谱的微结构光纤丙酮传感检测研究[J]. 光电子·激光 2015(07)
    • [21].基于高折射率液体填充的花瓣形微结构光纤可调滤模特性[J]. 物理学报 2019(08)
    • [22].微结构光纤SPR传感器进展[J]. 应用科学学报 2018(05)
    • [23].飞秒脉冲抽运掺镱微结构光纤产生超连续谱的实验研究[J]. 物理学报 2019(13)
    • [24].基于空芯微结构光纤拉曼探针的实验研究[J]. 物理学报 2018(18)
    • [25].烽火光纤蝉联国家“973计划”项目的支撑[J]. 烽火科技报 2009(09)
    • [26].开放式微结构光纤的气体拉曼传感特性研究[J]. 激光与光电子学进展 2015(06)
    • [27].新型微结构光纤光镊捕获力的计算[J]. 激光杂志 2018(09)
    • [28].微结构光纤推进超快光子学发展[J]. 激光与光电子学进展 2008(01)
    • [29].保偏微结构光纤啁啾光栅折射率传感特性分析[J]. 光谱学与光谱分析 2013(01)
    • [30].开放式微结构光纤研究[J]. 激光杂志 2012(03)

    标签:;  ;  ;  ;  ;  

    熔融拉锥型微结构光纤传感器的制备及应用研究
    下载Doc文档

    猜你喜欢