全文摘要
本实用新型涉及一种介质波导滤波器,包括介质本体,所述介质本体包括多个谐振器,所述多个谐振器之间相互连接,所述介质本体还包括至少一个负耦合孔,所述至少一个负耦合孔设置在其中两个相互连接的谐振器之间,从而可在该两个谐振器之间产生负的耦合,从而可实现介质波导滤波器的容性交叉耦合,使得介质波导滤波器在通带低端可形成至少一个传输零点。本实用新型通过在其中两个相互连接的谐振器之间设置负耦合孔,从而使得介质波导滤波器在通带低端可形成至少一个传输零点,并且采用设置负耦合孔的方式,简化了制造工艺,易于生产,同时可保证介质波导滤波器的小型化。
主设计要求
1.一种介质波导滤波器,包括介质本体,所述介质本体包括多个谐振器,所述多个谐振器之间相互连接,其特征在于:所述介质本体还包括至少一个负耦合孔,所述至少一个负耦合孔设置在其中两个相互连接的谐振器之间,从而可在该两个谐振器之间产生负的耦合,从而可实现介质波导滤波器的容性交叉耦合,使得介质波导滤波器在通带低端可形成至少一个传输零点。
设计方案
1.一种介质波导滤波器,包括介质本体,所述介质本体包括多个谐振器,所述多个谐振器之间相互连接,其特征在于:所述介质本体还包括至少一个负耦合孔,所述至少一个负耦合孔设置在其中两个相互连接的谐振器之间,从而可在该两个谐振器之间产生负的耦合,从而可实现介质波导滤波器的容性交叉耦合,使得介质波导滤波器在通带低端可形成至少一个传输零点。
2.根据权利要求1所述的介质波导滤波器,其特征在于:所述负耦合孔为一通孔,所述通孔包括设置在该两个谐振器顶面之间的主耦合孔以及设置在该两个谐振器底面之间的副耦合孔,所述主耦合孔和副耦合孔之间相互连通,且主耦合孔的内径大于副耦合孔的内径。
3.根据权利要求2所述的介质波导滤波器,其特征在于:每个谐振器的外表面、主耦合孔的内壁及底面、副耦合孔的内壁均设有导电屏蔽层。
4.根据权利要求3所述的介质波导滤波器,其特征在于:所述主耦合孔底面的导电屏蔽层形成有隔离区域,所述隔离区域围绕所述副耦合孔设置,用于隔离主耦合孔底面的导电屏蔽层与副耦合孔内壁的导电屏蔽层。
5.根据权利要求3所述的介质波导滤波器,其特征在于:将所述至少一个负耦合孔设置在其两者之间的两个谐振器,该两个谐振器的底面的导电屏蔽层之间形成有隔离区域,所述隔离区域围绕所述副耦合孔设置,用于隔离该两个谐振器底面的导电屏蔽层与副耦合孔内壁的导电屏蔽层。
6.根据权利要求1所述的介质波导滤波器,其特征在于:所述负耦合孔为一通孔,所述通孔包括设置在该两个谐振器顶面之间的上主耦合孔、设置在该两个谐振器底面之间的下主耦合孔以及位于上主耦合孔、下主耦合孔之间的副耦合孔,所述副耦合孔分别与所述上主耦合孔、下主耦合孔连通;所述上主耦合孔的内径、下主耦合孔的内径大于所述副耦合孔的内径。
7.根据权利要求6所述的介质波导滤波器,其特征在于:每个谐振器的外表面、上主耦合孔的内壁及底面、副耦合孔的内壁、下主耦合孔的内壁及底面均设有导电屏蔽层。
8.根据权利要求7所述的介质波导滤波器,其特征在于:所述上主耦合孔底面的导电屏蔽层形成有隔离区域,所述隔离区域围绕所述副耦合孔设置,用于隔离上主耦合孔底面的导电屏蔽层与副耦合孔内壁的导电屏蔽层;或者所述下主耦合孔底面的导电屏蔽层设有隔离区域,所述隔离区域围绕所述副耦合孔设置,用于隔离下主耦合孔底面的导电屏蔽层与副耦合孔内壁的导电屏蔽层。
9.根据权利要求7所述的介质波导滤波器,其特征在于:将所述至少一个负耦合孔设置在其两者之间的两个谐振器,该两个谐振器的底面的导电屏蔽层之间形成有隔离区域,所述隔离区域围绕所述下主耦合孔设置,用于隔离该两个谐振器底面的导电屏蔽层与下主耦合孔内壁的导电屏蔽层。
10.根据权利要求1所述的介质波导滤波器,其特征在于:所述介质本体包括两个谐振器、三个谐振器或四个谐振器。
设计说明书
【技术领域】
本实用新型涉及一种通信设备组件,尤其是涉及一种介质波导滤波器。
【背景技术】
滤波器是一种选频装置,是通信系统里的关键部件,可以使信号中需要的特定频率通过,而极大地衰减其它不需要的频率。随着通信系统的发展,要求滤波器小型化、轻量化。相较于传统的金属波导滤波器,基于高介电常数陶瓷材料的介质波导滤波器具有紧凑体积以及较高Q值的优点,是一种很好的小型化解决方案。
通信系统对带外抑制要求越来越高,为了实现高抑制,介质波导滤波器通常需要加交叉耦合来实现传输零点,从而实现提高带外抑制。其中,交叉耦合包括容性交叉耦合及感性交叉耦合,容性交叉耦合用于实现通带的低端传输零点,从而改善低端抑制,感性交叉耦合用于实现通带的高端传输零点,从而改善高端抑制。介质波导滤波器,在实现通带的低端传输零点时,相较于金属波导滤波器更加困难。目前业内要实现容性交叉耦合一般通过在介质外级联跨接金属探针或在端口腔增加零腔结构来实现,这些方式使得滤波器的整体结构更加复杂或者增加了滤波器的体积,不利于产品生产和小型化。
【实用新型内容】
本实用新型的目的在于克服上述技术的不足,提供一种介质波导滤波器,易于生产,体积小。
本实用新型提供的一种介质波导滤波器,包括介质本体,所述介质本体包括多个谐振器,所述多个谐振器之间相互连接,所述介质本体还包括至少一个负耦合孔,所述至少一个负耦合孔设置在其中两个相互连接的谐振器之间,从而可在该两个谐振器之间产生负的耦合,从而可实现介质波导滤波器的容性交叉耦合,使得介质波导滤波器在通带低端可形成至少一个传输零点。
进一步地,所述负耦合孔为一通孔,所述通孔包括设置在该两个谐振器顶面之间的主耦合孔以及设置在该两个谐振器底面之间的副耦合孔,所述主耦合孔和副耦合孔之间相互连通,且主耦合孔的内径大于副耦合孔的内径。
进一步地,每个谐振器的外表面、主耦合孔的内壁及底面、副耦合孔的内壁均设有导电屏蔽层。
进一步地,所述主耦合孔底面的导电屏蔽层形成有隔离区域,所述隔离区域围绕所述副耦合孔设置,用于隔离主耦合孔底面的导电屏蔽层与副耦合孔内壁的导电屏蔽层。
进一步地,将所述至少一个负耦合孔设置在其两者之间的两个谐振器,该两个谐振器的底面的导电屏蔽层之间形成有隔离区域,所述隔离区域围绕所述副耦合孔设置,用于隔离该两个谐振器底面的导电屏蔽层与副耦合孔内壁的导电屏蔽层。
进一步地,所述负耦合孔为一通孔,所述通孔包括设置在该两个谐振器顶面之间的上主耦合孔、设置在该两个谐振器底面之间的下主耦合孔以及位于上主耦合孔、下主耦合孔之间的副耦合孔,所述副耦合孔分别与所述上主耦合孔、下主耦合孔连通;所述上主耦合孔的内径、下主耦合孔的内径大于所述副耦合孔的内径。
进一步地,每个谐振器的外表面、上主耦合孔的内壁及底面、副耦合孔的内壁、下主耦合孔的内壁及底面均设有导电屏蔽层。
进一步地,所述上主耦合孔底面的导电屏蔽层形成有隔离区域,所述隔离区域围绕所述副耦合孔设置,用于隔离上主耦合孔底面的导电屏蔽层与副耦合孔内壁的导电屏蔽层;或者所述下主耦合孔底面的导电屏蔽层设有隔离区域,所述隔离区域围绕所述副耦合孔设置,用于隔离下主耦合孔底面的导电屏蔽层与副耦合孔内壁的导电屏蔽层。
进一步地,将所述至少一个负耦合孔设置在其两者之间的两个谐振器,该两个谐振器的底面的导电屏蔽层之间形成有隔离区域,所述隔离区域围绕所述下主耦合孔设置,用于隔离该两个谐振器底面的导电屏蔽层与下主耦合孔内壁的导电屏蔽层。
进一步地,所述介质本体包括两个谐振器、三个谐振器或四个谐振器。
本实用新型通过在其中两个相互连接的谐振器之间设置负耦合孔,从而可在该两个谐振器之间产生负的耦合,从而可实现介质波导滤波器的容性交叉耦合,使得介质波导滤波器在通带低端可形成至少一个传输零点,并且采用设置负耦合孔的方式,相对现有技术,简化了制造工艺,易于生产,同时不会增大介质波导滤波器的体积,可保证介质波导滤波器的小型化。
【附图说明】
图1为本实用新型第一实施例提供的一种介质波导滤波器的结构示意图;
图2是图1所示介质波导滤波器的剖视示意图;
图3为本实用新型第二实施例提供的一种介质波导滤波器的结构示意图;
图4是图3所示介质波导滤波器的剖视示意图;
图5为本实用新型第三实施例提供的一种介质波导滤波器的结构示意图;
图6是图5所示介质波导滤波器的剖视示意图;
图7为本实用新型第四实施例提供的一种介质波导滤波器的结构示意图;
图8是图7所示介质波导滤波器的剖视示意图;
图9为本实用新型第五实施例提供的一种介质波导滤波器的结构示意图;
图10是图9所示介质波导滤波器的剖视示意图;
图11为本实用新型第六实施例提供的一种介质波导滤波器的俯视示意图;
图12为本实用新型第七实施例提供的一种介质波导滤波器的俯视示意图。
【具体实施方式】
下面结合附图和实施例对本实用新型作进一步的描述。
第一实施例
参考图1和图2,本实用新型提供的一种介质波导滤波器,包括介质本体10,介质本体10包括多个谐振器,多个谐振器之间相互连接。介质本体10的材质为固态介电材料例如陶瓷等。介质本体10还包括至少一个负耦合孔30,该至少一个负耦合孔30设置在其中两个相互连接的谐振器之间,从而可在该两个谐振器之间产生负的耦合,从而可实现介质波导滤波器的容性交叉耦合,使得介质波导滤波器在通带低端可形成至少一个传输零点,从而达到改善低端抑制的目的。
本实施例中,介质本体10包括两个谐振器11、12。两个谐振器11、12的结构、大小均相同,可以理解地,两个谐振器11、12的结构、大小也可以不同。两个谐振器11、12之间相互连接形成一长方形结构、正方形结构等其他形状的结构。
每个谐振器设有至少一个调谐盲孔111,调谐盲孔111可用于实现介质波导滤波器的谐振频率的调节,通过调整调谐盲孔111的深度可实现谐振频率的调节。本实施例中,每个谐振器的顶面设有一个调谐盲孔111,调谐盲孔111的数量还可以是例如两个或两个以上,可根据实际情况设置调谐盲孔111的数量。可以理解地,调谐盲孔111还可以设置在对应的谐振器的底面。
两个谐振器11、12之间设有一个负耦合孔30。可以理解地,两个谐振器11、12之间也可设置两个或两个以上的负耦合孔30。通过设置的一个负耦合孔30,可在该两个谐振器11、12之间产生负的耦合,从而使得介质波导滤波器在通带低端可形成一个传输零点,特殊位置也可实现两个低端传输零点。可以理解地,也可根据实际需要的低端传输零点的个数以及频率来设置负耦合孔30的数量。通过在两个谐振器11、12之间设置负耦合孔30的方式,相对现有技术,简化了制造工艺,易于生产,并且不会增大介质波导滤波器的体积。
负耦合孔30为一通孔,通孔沿介质本体10的高度方向贯穿介质本体10,通孔包括设置在该两个谐振器11、12顶面之间的主耦合孔31以及设置在该两个谐振器11、12底面之间的副耦合孔32,主耦合孔31和副耦合孔32之间相互连通,且主耦合孔31的内径大于副耦合孔32的内径。主耦合孔31的深度大于副耦合孔32的深度,且大于50%的谐振器的高度。主耦合孔31和副耦合孔32的截面形状可以是圆形、椭圆形或方形等等。将负耦合孔30设置为包括主耦合孔31和副耦合孔32的通孔形式,便于其内表面的金属化处理,即便于覆盖导电屏蔽层。
每个谐振器的外表面(包括顶面、底面及侧面)设有导电屏蔽层41。主耦合孔31的内壁及底面设有导电屏蔽层44a、44b。副耦合孔32的内壁设有导电屏蔽层45。调谐盲孔111的内壁及底面也设有导电屏蔽层42a、42b。所有的导电屏蔽层的结构相同且是一体成型的,便于制造。导电屏蔽层可通过涂覆、电镀等工艺设置在对应的面上。导电屏蔽层例如为银层、铜层等等。
本实施例中,主耦合孔31底面的导电屏蔽层44b形成有隔离区域50,隔离区域50围绕副耦合孔32设置,用于隔离主耦合孔31底面的导电屏蔽层44b与副耦合孔32内壁的导电屏蔽层45。
隔离区域50的形成,通常是先在主耦合孔31的底面设置导电屏蔽层44b,然后通过激光或打磨等工艺方式将位于副耦合孔32周边的一部分导电屏蔽层44b去掉,从而形成隔离区域50。
隔离区域50的截面形状为圆形,可以理解地,隔离区域50的截面形状还可以是例如方形、椭圆形等形状,可根据实际情况设置隔离区域50的截面形状。
通过调整隔离区域50的面积的大小,可以改变两个谐振器11、12之间的负的耦合量的大小。通过调整主耦合孔31的深度以及隔离区域50的面积,可达到调整容性交叉耦合强弱的目的。
第二实施例
参考图3和图4,本实施例与第一实施例不同的是,两个谐振器11、12底面的导电屏蔽层41之间形成有隔离区域50,隔离区域50围绕副耦合孔32设置,用于隔离该两个谐振器11、12底面的导电屏蔽层41与副耦合孔32内壁的导电屏蔽层45。隔离区域50的形成与第一实施例类似,通常是先在两个谐振器11、12的底面设置导电屏蔽层41,然后通过激光或打磨等工艺方式将位于副耦合孔32周边的一部分导电屏蔽层41去掉,从而形成隔离区域50。
通过调整隔离区域50的面积的大小,同样可实现改变两个谐振器11、12之间的负的耦合量的大小。通过调整主耦合孔31的深度以及隔离区域50的面积,同样可实现调整容性交叉耦合的强弱。
第三实施例
参考图5和图6,本实施例与第一实施例不同的是,负耦合孔30包括设置在该两个谐振器11、12顶面之间的上主耦合孔31、设置在该两个谐振器11、12底面之间的下主耦合孔32以及位于上主耦合孔31、下主耦合孔32之间的副耦合孔33。副耦合孔33分别与上主耦合孔31、下主耦合孔32连通。上主耦合孔31的内径、下主耦合孔32的内径大于副耦合孔33的内径。上主耦合孔31的内径与下主耦合孔32的内径相等,当然,上主耦合孔31的内径可以与下主耦合孔32的内径不相等。
上主耦合孔31的深度大于下主耦合孔32的深度、副耦合孔33的深度,且大于50%的谐振器的高度。下主耦合孔32的深度与副耦合孔33的深度相等,当然,下主耦合孔32的深度可以与副耦合孔33的深度不相等。上主耦合孔31、副耦合孔33、下主耦合孔32的截面形状为圆形、椭圆形或方形等等。将负耦合孔30设置为包括上主耦合孔31、副耦合孔33、下主耦合孔32的通孔形式,便于其内表面的金属化处理,即便于覆盖导电屏蔽层。。
每个谐振器的外表面设有导电屏蔽层41。上主耦合孔31的内壁及底面设有导电屏蔽层44a、44b。副耦合孔33的内壁设有导电屏蔽层46。下主耦合孔32的内壁及底面设有导电屏蔽层45a、45b。所有的导电屏蔽层的结构相同且是一体成型的,便于制造。
本实施例中,上主耦合孔31底面的导电屏蔽层44b形成有隔离区域50,隔离区域50围绕副耦合孔33设置,用于隔离上主耦合孔31底面的导电屏蔽层44b与副耦合孔33内壁的导电屏蔽层46。
隔离区域50的形成与第一实施例类似,通常是先在上主耦合孔31的底面设置导电屏蔽层44b,然后通过激光或打磨等工艺方式将位于副耦合孔33周边的一部分导电屏蔽层44b去掉,从而形成隔离区域50。
通过调整隔离区域50的面积的大小,同样可实现改变两个谐振器11、12之间的负的耦合量的大小。通过调整上主耦合孔31的深度以及隔离区域50的面积,同样可实现调整容性交叉耦合的强弱。
第四实施例
参考图7和图8,本实施例与第三实施例不同的是,下主耦合孔32底面的导电屏蔽层45b形成有隔离区域50,隔离区域50围绕副耦合孔33设置,用于隔离下主耦合32孔底面的导电屏蔽层45b与副耦合孔33内壁的导电屏蔽层46。
隔离区域50的形成与第三实施例类似,通常是先在下主耦合孔32的底面设置导电屏蔽层45b,通过激光或打磨等工艺方式将位于副耦合孔33周边的一部分导电屏蔽层45b去掉,从而形成隔离区域50。
通过调整隔离区域50的面积的大小,同样可实现改变两个谐振器11、12之间的负的耦合量的大小。通过调整上主耦合孔31的深度以及隔离区域50的面积,同样可实现调整容性交叉耦合的强弱。
第五实施例
参考图9和图10,本实施例与第三实施例不同的是,两个谐振器11、12的底面的导电屏蔽层41之间形成有隔离区域50,隔离区域50围绕下主耦合孔32设置,用于隔离该两个谐振器11、12底面的导电屏蔽层41与下主耦合孔32内壁的导电屏蔽层45a。
隔离区域50的形成与第三实施例类似,通常是先在两个谐振器11、12的底面设置导电屏蔽层41,然后通过激光或打磨等工艺方式将位于下主耦合孔32周边的一部分导电屏蔽层41去掉,从而形成隔离区域50。
通过调整隔离区域50的面积的大小,同样可实现改变两个谐振器11、12之间的负的耦合量的大小。通过调整上主耦合孔31的深度以及隔离区域50的面积,同样可实现调整容性交叉耦合的强弱。
第六实施例
参考图11,本实施例与第一实施例不同的是,本实施例的介质本体10包括三个谐振器11、12、13,三个谐振器11、12、13之间相互连接形成一T形结构。谐振器11、13的结构、大小均相同。其中谐振器之间11、13设有一个负耦合孔30,可以理解地,谐振器11、13之间可以设置两个或两个以上的负耦合孔30。通过设置的一个负耦合孔30,可在该两个谐振器11、13之间产生负的耦合,从而使得介质波导滤波器在通带低端可形成一个传输零点,且简化了制造工艺,易于生产,且不会增大介质波导滤波器的体积。
谐振器11与谐振器12之间通过窗口71耦合电磁波能量,谐振器12和谐振器13之间通过窗口72耦合电磁波能量。窗口71与窗口72之间相互连通。
第七实施例
参考图12,本实施例与第一实施例不同的是,本实施例的介质本体10包括四个谐振器11、12、13、14,四个谐振器11、12、13、14之间相互连接形成一正方形结构。四个谐振器11、12、13、14的结构、大小相同。其中谐振器11、14之间设有一个负耦合孔30,可以理解地,谐振器11、14之间可以设置两个或两个以上的负耦合孔30。通过设置的一个负耦合孔30,可在该两个谐振器11、14之间产生负的耦合,从而使得介质波导滤波器在通带低端可形成一个传输零点,并且简化了制造工艺,易于生产,且不会增大介质波导滤波器的体积。
谐振器11与谐振器12之间、谐振器12与谐振器13之间、谐振器13与谐振器14之间分别通过窗口73、74、75耦合能量,窗口73、74、75之间相互连通。
在其他实施方式中,介质本体10还可以是包括五个、六个或其他数量的谐振器,可以根据实际情况进行设置。
以上实施例仅表达了本实用新型的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,如对各个实施例中的不同特征进行组合等,这些都属于本实用新型的保护范围。
设计图
相关信息详情
申请码:申请号:CN201921115953.7
申请日:2019-07-16
公开号:公开日:国家:CN
国家/省市:94(深圳)
授权编号:CN209843915U
授权时间:20191224
主分类号:H01P1/20
专利分类号:H01P1/20;H01P7/10
范畴分类:38G;38K;
申请人:深圳市国人射频通信有限公司
第一申请人:深圳市国人射频通信有限公司
申请人地址:518000 广东省深圳市南山区高新区中区科技中三路国人大厦B栋7F
发明人:吴建汪
第一发明人:吴建汪
当前权利人:深圳市国人射频通信有限公司
代理人:周才淇;黄蕴丽
代理机构:44303
代理机构编号:深圳市盈方知识产权事务所(普通合伙) 44303
优先权:关键词:当前状态:审核中
类型名称:外观设计