论文摘要
目的建立电子鼻和随机森林算法快速鉴别野生与养殖日本真鲈的分析方法。方法采用来源确定且规格不同的日本真鲈,利用电子鼻中14个金属氧化物传感器获取53份日本真鲈样本(养殖样本25份,野生样本28份)的特征信号,构建得到行×列为53×15(含标签列,野生为1,养殖为-1)的初始特征矩阵。构建随机森林(randomforest,RF)模型,并依据袋外错误率(out-of-bagerrorrate,OOB)对随机森林模型的估计器(决策树)数量和单一决策树最大特征的2个参数进行优化。结果模型最优估计器数为50,最大特征数为14,模型的鉴别准确率达到98.2%。通过该模型,以贡献率为指标,对电子鼻传感器进行了特征筛选和排序,其中S14和S4传感器的贡献率分别为42.9%和36.0%。结论该技术可以快速鉴别野生和养殖日本真鲈。
论文目录
文章来源
类型: 期刊论文
作者: 孙永,刘楠,李智慧,马玉洁,周德庆
关键词: 电子鼻,随机森林,鉴别,日本真鲈,特征筛选
来源: 食品安全质量检测学报 2019年02期
年度: 2019
分类: 工程科技Ⅰ辑
专业: 轻工业手工业
单位: 中国水产科学研究院黄海水产研究所,上海海洋大学食品学院,海洋国家实验室海洋药物与生物制品功能实验室
基金: 中央级公益性科研院所基本科研业务费项目(2016HY-ZD0801)~~
分类号: TS254.7
页码: 551-556
总页数: 6
文件大小: 1256K
下载量: 81
相关论文文献
- [1].基于迭代随机森林算法的糖尿病预测[J]. 长春工业大学学报 2019(06)
- [2].基于改进随机森林的城市河流水生态健康评价研究[J]. 海河水利 2019(06)
- [3].基于随机森林癫痫患者脑电数据的分析研究[J]. 中国数字医学 2020(01)
- [4].基于局部均值分解和迭代随机森林的脑电分类[J]. 吉林大学学报(信息科学版) 2020(01)
- [5].网贷平台数据的随机森林预测模型实证分析[J]. 宜宾学院学报 2019(12)
- [6].采用单类随机森林的异常检测方法及应用[J]. 西安交通大学学报 2020(02)
- [7].随机森林数据情感挖掘方法分析[J]. 通讯世界 2020(01)
- [8].运用最大熵模型和随机森林模型对东北红松分布的模拟[J]. 东北林业大学学报 2020(03)
- [9].基于随机森林算法的城区土地覆盖分类研究[J]. 河北省科学院学报 2020(01)
- [10].运用随机森林模型对北京市林分蓄积生长量的预测[J]. 东北林业大学学报 2020(05)
- [11].融合人工鱼群和随机森林算法的膝关节接触力预测[J]. 中国医学物理学杂志 2020(04)
- [12].结合特征选择和优化随机森林的无线网络数据丢失重建[J]. 上海电力大学学报 2020(03)
- [13].基于随机森林算法的耕地质量定级指标体系研究[J]. 华南农业大学学报 2020(04)
- [14].一种基于随机森林的组合分类算法设计与应用[J]. 电子设计工程 2020(16)
- [15].基于随机森林算法的日光温室内气温预测模型研究[J]. 中国农学通报 2020(25)
- [16].基于因子分析和迭代随机森林方法的学生成绩综合评价——以都匀市某高中为例[J]. 黔南民族师范学院学报 2020(04)
- [17].基于随机森林模拟的辽宁省降水量空间分布研究[J]. 陕西水利 2020(09)
- [18].随机森林模型在膝关节炎患者结构特征与症状定量分析中的应用(英文)[J]. 磁共振成像 2020(10)
- [19].基于特征选择的极限随机森林算法研究[J]. 计算机应用研究 2020(09)
- [20].随机森林回归分析方法在代谢组学批次效应移除中的应用[J]. 中国卫生统计 2020(05)
- [21].一种面向非均衡分类的随机森林算法[J]. 计算机与现代化 2018(12)
- [22].随机森林模型和决策树模型在肝硬化上消化道出血预后中的应用[J]. 中国卫生统计 2019(02)
- [23].基于随机森林的债券违约分析[J]. 当代经济 2018(03)
- [24].基于改进网格搜索算法的随机森林参数优化[J]. 计算机工程与应用 2018(10)
- [25].随机森林在城市不透水面提取中的应用研究[J]. 云南师范大学学报(自然科学版) 2017(03)
- [26].一种顺序响应的随机森林:变量预测和选择[J]. 小型微型计算机系统 2017(08)
- [27].基于随机森林回归的军械器材需求预测[J]. 自动化应用 2017(09)
- [28].流式大数据下随机森林方法及应用[J]. 西北工业大学学报 2015(06)
- [29].面向高维数据的随机森林算法优化探讨[J]. 商 2016(04)
- [30].深度随机森林在离网预测中的应用[J]. 计算机科学 2016(06)