中立型随机泛函微分方程Euler-Maruyama数值解的性质

中立型随机泛函微分方程Euler-Maruyama数值解的性质

论文摘要

中立型泛函微分方程不仅依赖于当前和过去一段时间的状态,而且还依赖于过去一段时间的状态变化率.它广泛地用于化学反应过程、传输过程、热交换过程、大规模集成电路等领域.当由此方程刻画的实际系统在数学建模过程中受到外界干扰和系统参数经历突变时,可以用带马氏调制的中立型随机泛函微分方程来描述.由于其精确解很难被表达出来,在数值仿真时常用其数值解.由于中立项和马氏调制同时存在,研究带马氏调制的中立型随机泛函微分方程数值解会碰到瓶颈.本文主要考虑带马尔科夫调制的中立型随机泛函微分方程Euler-Maruyama数值解的稳定性和收敛性.其架构如下:第一章主要介绍国内外研究现状和本文的主要创新点,给出本文中使用到的随机分析理论知识和基本不等式,以及一些常用的记号;第二章在漂移项和耗散项满足局部Lipschitz条件和局部单调性条件,中立项满足压缩性条件时,分析中立型随机泛函微分方程截断Euler-Maruyama数值解的强收敛性;此外,当全局Lipschitz条件和全局单调性条件成立时,考虑了此方程截断Euler-Maruyama数值解强收敛性和收敛阶的估计;第三章当漂移项和耗散项满足全局Lipschitz条件和全局单调性条件,中立项满足压缩性条件时,研究带马尔科夫调制的中立型随机泛函微分方程Euler-Maruyama数值解依分布稳定性和强收敛性.

论文目录

  • 摘要
  • abstract
  • 第1章 绪论
  •   1.1 国内外研究发展背景
  •   1.2 主要创新点
  •   1.3 预备知识
  •   1.4 常用符号说明
  • 第2章 中立型随机泛函微分方程的截断Euler-Maruyama数值解的强收敛性
  •   2.1 预备知识
  •   2.2 截断Euler-Maruyama数值解
  •   2.3 高阶矩和依概率收敛
  •   2.4 定理2.2.3 的证明
  •   2.5 定理2.2.4 的证明
  •   2.6 小结
  • 第3章 带马氏调制的中立型随机泛函微分方程的数值解
  •   3.1 预备知识
  •   3.2 Euler-Maruyama方法
  •   3.3 依分布稳定性
  •   3.4 例子
  •   3.5 不变测度的收敛性
  •   3.6 小结
  • 结论与展望
  • 致谢
  • 参考文献
  • 攻读学位期间的研究成果
  • 文章来源

    类型: 硕士论文

    作者: 胡雨茹

    导师: 袁成桂

    关键词: 数值解,截断的数值解,中立型随机泛函微分方程,马尔科夫调制,依分布稳定性,强收敛性

    来源: 南昌大学

    年度: 2019

    分类: 基础科学

    专业: 数学,数学

    单位: 南昌大学

    分类号: O241.8

    DOI: 10.27232/d.cnki.gnchu.2019.001994

    总页数: 71

    文件大小: 1751K

    下载量: 27

    相关论文文献

    • [1].一类脉冲随机泛函微分方程的分布稳定性分析[J]. 数学杂志 2020(02)
    • [2].无穷时滞脉冲随机泛函微分方程一般衰减意义下p阶矩稳定性[J]. 湖北大学学报(自然科学版) 2020(04)
    • [3].三阶时滞泛函微分方程的振动性[J]. 山西师范大学学报(自然科学版) 2020(03)
    • [4].几类泛函微分方程的稳定性比较研究[J]. 重庆工商大学学报(自然科学版) 2019(04)
    • [5].一类二阶具多时滞次二次增长条件泛函微分方程同宿轨的存在性[J]. 汕头大学学报(自然科学版) 2017(01)
    • [6].无限滞后测度泛函微分方程的平均化(英文)[J]. 数学杂志 2017(05)
    • [7].关于脉冲泛函微分方程的一种新比较原理[J]. 江西科学 2015(04)
    • [8].一类二阶迭代泛函微分方程的周期解[J]. 应用数学 2020(02)
    • [9].脉冲中立泛函微分方程概周期解的存在性(英文)[J]. 应用数学 2015(01)
    • [10].脉冲滞后泛函微分方程的平均化(英文)[J]. 应用数学 2015(01)
    • [11].比较原理和无限时滞随机泛函微分方程解的稳定性[J]. 广东工业大学学报 2015(04)
    • [12].一类奇异泛函微分方程边值问题的多重正解[J]. 数学杂志 2013(01)
    • [13].一阶非线性泛函微分方程的振动准则[J]. 贵州师范大学学报(自然科学版) 2013(05)
    • [14].一类变时滞泛函微分方程的解[J]. 高等数学研究 2012(01)
    • [15].时滞泛函微分方程解的唯一性和渐近性分析[J]. 河北北方学院学报(自然科学版) 2012(05)
    • [16].四阶泛函微分方程边值问题正解的存在性[J]. 高校应用数学学报A辑 2011(01)
    • [17].B空间中无限时滞随机泛函微分方程解的估计(英文)[J]. 应用数学 2011(04)
    • [18].一类二阶时滞泛函微分方程的周期解[J]. 内蒙古大学学报(自然科学版) 2010(01)
    • [19].一类具有分布时滞的二阶泛函微分方程周期解[J]. 哈尔滨商业大学学报(自然科学版) 2009(01)
    • [20].脉冲时滞泛函微分方程正周期解的存在性[J]. 合肥工业大学学报(自然科学版) 2009(04)
    • [21].一类脉冲泛函微分方程周期解的存在性[J]. 安徽大学学报(自然科学版) 2009(03)
    • [22].一类脉冲泛函微分方程正周期解的存在性[J]. 安徽建筑工业学院学报(自然科学版) 2008(05)
    • [23].滞后型脉冲泛函微分方程解对初值的可微性[J]. 科学技术与工程 2008(02)
    • [24].比较原理和带马尔可夫调制的随机泛函微分方程(英文)[J]. 应用数学 2008(04)
    • [25].一阶迭代泛函微分方程的解析解[J]. 科学技术与工程 2008(19)
    • [26].带双参数的脉冲泛函微分方程正周期解的存在性[J]. 山东大学学报(理学版) 2015(06)
    • [27].抽象泛函微分方程的权伪概自守温和解(英文)[J]. 湖南师范大学自然科学学报 2015(05)
    • [28].一类高维脉冲泛函微分方程周期解的存在性(英文)[J]. 生物数学学报 2014(01)
    • [29].一类无限时滞随机泛函微分方程解的存在唯一性[J]. 衡阳师范学院学报 2014(03)
    • [30].一类中立型随机泛函微分方程的稳定性分析[J]. 四川师范大学学报(自然科学版) 2011(04)

    标签:;  ;  ;  ;  ;  ;  

    中立型随机泛函微分方程Euler-Maruyama数值解的性质
    下载Doc文档

    猜你喜欢