非垂直拍摄获取细叶作物覆盖度优化算法研究

非垂直拍摄获取细叶作物覆盖度优化算法研究

论文摘要

【目的】探究非垂直拍摄获取细叶作物覆盖度优化算法以及非垂直拍摄对作物覆盖度计算结果的影响。【方法】在北京市小汤山基地草业研究中心露天环境下,以青绿薹草、结缕草为试验对象,获取45°、60°、90°(与地面夹角)3种拍摄角度下的图像,采用基于自适应权重粒子群改进K-means的图像分割方法,分析不同拍摄角度对青绿薹草覆盖度测量精度的影响,研究非垂直拍摄与垂直角度下覆盖度的关系曲线。首先将草RGB图像转化成HSV颜色空间,在HSV颜色空间利用自适应权重PSO算法向全局像素解的子空间搜寻,通过迭代搜寻到全局最优解,确定最佳初始聚类中心;其次利用K-means算法对不同角度图像像素进行聚类划分,从而得到草冠层区域分割结果,最后采用形态学滤波方法对分割结果进行优化。【结果】垂直拍摄时,传统K-means算法计算的2个品种的覆盖度总体相对误差分别为32.89%和34.37%,而本文算法下2个品种总体相对误差分别为11.23%和15.85%。相比于K-means算法,本文算法环境适应性好,算法精度高。非垂直拍摄条件下,本文算法能够克服多角度拍摄导致图像色彩分布不均匀的问题,有效分割出草冠层区域,90°覆盖度估测值与真实值平均误差为3.27%,60°二者平均误差为4.61%,45°平均误差为5.70%,随着拍摄角度的减小,平均误差略有增大,但均小于6%。非垂直角度下计算的覆盖度与垂直角度覆盖度呈显著地线性关系。【结论】采用本文方法可以提高非垂直拍摄获取作物覆盖度的精度。

论文目录

  • 0 引言
  • 1 材料与方法
  •   1.1 数据采集
  •   1.2 颜色空间转换
  •   1.3 算法优化
  •     1.3.1 K-means算法
  •     1.3.2 APSO-Kmeans算法
  • 2 结果与分析
  •   2.1 分割效果对比
  •     2.1.1 青绿薹草不同角度分割效果图对比
  •     2.1.2 结缕草不同角度分割效果图对比
  •   2.2 算法评价与分析
  •   2.3 不同角度覆盖度相关性分析
  • 3 讨论
  • 4 结论
  • 文章来源

    类型: 期刊论文

    作者: 张慧,伍萍辉,张馨,孙铁军,薛绪掌,郑文刚

    关键词: 图像分割,算法,优化算法,多角度,作物覆盖度

    来源: 灌溉排水学报 2019年09期

    年度: 2019

    分类: 农业科技,基础科学,信息科技

    专业: 生物学,计算机软件及计算机应用,自动化技术

    单位: 河北工业大学电子信息工程学院,北京农业信息技术研究中心,北京市农林科学院北京草业与环境研究中心

    基金: 国家重点研发计划项目(2016YFC0403102),北京市农林科学院科技创新能力建设专项(KJCX20170204),北京市农林科学院科研创新平台建设项目(PT2019-21)

    分类号: TP391.41;TP18;Q948

    DOI: 10.13522/j.cnki.ggps.2019119

    页码: 55-62

    总页数: 8

    文件大小: 4475K

    下载量: 53

    相关论文文献

    • [1].分水岭算法的改进及在图像分割中的应用[J]. 现代信息科技 2019(24)
    • [2].血管造影图像分割方法研究的现状与进展[J]. 生物医学工程研究 2020(01)
    • [3].数字图像处理中的图像分割技术及其应用[J]. 通讯世界 2020(04)
    • [4].基于深度学习的激光雷达遥感图像分割[J]. 激光杂志 2020(06)
    • [5].基于小波融合的苹果图像分割的研究[J]. 科技视界 2018(29)
    • [6].图像分割方法综述[J]. 电脑知识与技术 2019(05)
    • [7].基于深度学习的图像分割技术[J]. 人工智能 2019(02)
    • [8].基于模糊信息处理的图像分割方法研究[J]. 信息系统工程 2017(11)
    • [9].数字图像处理中的图像分割技术应用研究[J]. 电子技术与软件工程 2017(01)
    • [10].一种基于统计学习理论的最小生成树图像分割准则[J]. 武汉大学学报(信息科学版) 2017(07)
    • [11].基于显著性检测的协同图像分割研究[J]. 现代计算机(专业版) 2017(24)
    • [12].一种基于数据场的图像分割方法与研究[J]. 长春工程学院学报(自然科学版) 2016(02)
    • [13].基于自适应局部阈值的交互式图像分割[J]. 计算机应用与软件 2014(11)
    • [14].对图像分割方法的认识及新进展研究[J]. 数码世界 2018(08)
    • [15].唇纹识别图像分割系统的研究[J]. 山西青年 2017(11)
    • [16].浅谈基于阈值的图像分割方法[J]. 科学家 2017(02)
    • [17].医学图像分析系统设计[J]. 数码世界 2017(09)
    • [18].基于边缘的图像分割在牛体尺测量中的应用[J]. 数字技术与应用 2020(02)
    • [19].一种基于标记分水岭的图像分割方法[J]. 现代计算机 2020(15)
    • [20].基于粒子群算法选择特征的船舶图像分割研究[J]. 舰船科学技术 2020(20)
    • [21].一种基于种子优化算法的图像分割方法[J]. 电脑知识与技术 2019(06)
    • [22].基于物体间支撑语义关系的室内场景彩色深度图像分割[J]. 控制理论与应用 2019(04)
    • [23].图像分割方法综述[J]. 信息记录材料 2019(07)
    • [24].基于图论的图像分割及其嵌入式应用研究[J]. 石家庄学院学报 2017(06)
    • [25].改进马尔可夫模型的SAR图像分割[J]. 遥感信息 2017(06)
    • [26].基于蚁群算法的图像分割方法[J]. 宝鸡文理学院学报(自然科学版) 2018(02)
    • [27].基于均值平移算法的图像分割技术[J]. 电子技术与软件工程 2017(01)
    • [28].基于图像分割的糖尿病性视网膜病变血管研究[J]. 中国医疗器械信息 2017(19)
    • [29].改进小波算法在图像分割技术中的应用[J]. 数字技术与应用 2016(03)
    • [30].棉花图像分割方法的比较与分析[J]. 中国棉花加工 2016(01)

    标签:;  ;  ;  ;  ;  

    非垂直拍摄获取细叶作物覆盖度优化算法研究
    下载Doc文档

    猜你喜欢