论文摘要
研究非线性椭圆型偏微分方程的方法有很多,例如:不动点定理、上下界方法、拓扑度理论等等.本文主要是利用不动点理论解决两类问题;第一类是证明了一类半线性椭圆型方程边值问题的正径向解存在性,首先通过径向转化把已知问题转化成它的径向形式,再利用不动点定理讨论其径向形式解的存在性和唯一性以及不存在性,并给出了相应的实例去说明了定理的实用性;第二类是讨论了半线性椭圆型方程组在洞型区域内正解的存在性与唯一性,这部分内容主要是通过作变换,把有界洞型区域上的问题转化为我们熟悉的有界光滑区域上进行研究,再使问题中的非线性项满足一些特定条件,然后利用不动点定理,证明出了这类问题解的存在性和唯一性.
论文目录
文章来源
类型: 硕士论文
作者: 李小帅
导师: 钟金标
关键词: 紧正算子,正解,不动点定理,洞型区域,正径向解,算子,恒等式,不等式
来源: 安庆师范大学
年度: 2019
分类: 基础科学
专业: 数学
单位: 安庆师范大学
分类号: O175.25
总页数: 31
文件大小: 2090K
下载量: 22
相关论文文献
- [1].一类完全四阶边值问题解的存在性[J]. 浙江大学学报(理学版) 2020(02)
- [2].一类三阶m点边值问题的正解[J]. 滨州学院学报 2019(06)
- [3].n阶m点边值问题的三个正解[J]. 西北师范大学学报(自然科学版) 2020(03)
- [4].高阶微分方程边值问题正解的存在性[J]. 兰州文理学院学报(自然科学版) 2020(03)
- [5].一类半正非线性弹性梁方程边值问题正解的存在性[J]. 山东大学学报(理学版) 2020(06)
- [6].饱和多孔地基与矩形板动力相互作用的非轴对称混合边值问题[J]. 力学学报 2020(04)
- [7].一类四阶积分边值问题的三个正解[J]. 滨州学院学报 2020(02)
- [8].三角形区域上复合边值问题探讨[J]. 天津职业技术师范大学学报 2016(04)
- [9].一类非线性二阶四点边值问题解的存在性[J]. 江苏师范大学学报(自然科学版) 2017(02)
- [10].四阶奇异m点边值问题的正解[J]. 曲阜师范大学学报(自然科学版) 2016(02)
- [11].一类四阶边值问题的特征值对边界的依赖性(英文)[J]. 应用数学 2016(03)
- [12].带参数的四阶边值问题正解的存在性[J]. 四川师范大学学报(自然科学版) 2015(03)
- [13].非线性常微分方程边值问题的求解[J]. 课程教育研究 2017(29)
- [14].解在加权空间中的一个非线性二阶边值问题(英文)[J]. 黑龙江大学自然科学学报 2013(06)
- [15].四阶m-点边值问题的上下解方法[J]. 黑龙江大学自然科学学报 2020(05)
- [16].带有完全非线性项的四阶边值问题的多正解性[J]. 华东师范大学学报(自然科学版) 2020(06)
- [17].一类非线性二阶边值问题正解的存在性与多解性[J]. 四川大学学报(自然科学版) 2019(06)
- [18].含有所有阶导数的2n阶非线性常微分方程边值问题的正解[J]. 数学的实践与认识 2020(15)
- [19].非线性m点边值问题正解的新结果[J]. 四川大学学报(自然科学版) 2019(03)
- [20].无穷区间上二阶三点差分方程边值问题正解的存在性[J]. 河北科技大学学报 2016(06)
- [21].含有各阶导数的非线性4阶边值问题的正解[J]. 怀化学院学报 2017(05)
- [22].无穷区间上分数阶非局部边值问题的可解性[J]. 河北科技大学学报 2015(06)
- [23].一类四点边值问题的多个对称正解[J]. 数学的实践与认识 2016(12)
- [24].两类非线性三阶四点边值问题解的存在性[J]. 北华大学学报(自然科学版) 2016(05)
- [25].一类高阶奇异非线性共轭边值问题的正解[J]. 唐山师范学院学报 2016(05)
- [26].一类非局部边值问题的数值方法[J]. 黑龙江科技大学学报 2014(06)
- [27].一类半正奇异分数阶边值问题正解的存在性[J]. 常州工学院学报 2014(05)
- [28].一类积分边值问题解的存在性与唯一性[J]. 长春工程学院学报(自然科学版) 2015(02)
- [29].不含u'的二阶非线性完全边值问题[J]. 数学学习与研究 2015(19)
- [30].1类4阶4点边值问题正解的存在性和多解性[J]. 河南师范大学学报(自然科学版) 2013(06)
标签:紧正算子论文; 正解论文; 不动点定理论文; 洞型区域论文; 正径向解论文; 算子论文; 恒等式论文; 不等式论文;