基于PCA-BP神经网络的多股铜导线熔痕定量金相识别方法研究

基于PCA-BP神经网络的多股铜导线熔痕定量金相识别方法研究

论文摘要

为实现火灾现场中多股铜导线熔痕的自动识别,采用主成分分析(PCA)和反向传播(BP)神经网络算法对四种多股铜导线熔痕(一次短路熔痕、二次短路熔痕、过负荷熔痕和火烧熔痕)的金相组织进行了识别研究。利用Image-Pro Plus 6.0和Axio-Imaging软件获取每种熔痕30组17维金相组织参数数据,采用PCA对四种熔痕共120组数据降维,获得前6个主成分得分矩阵,建立具有6个输入层节点,10个隐层节点和4个输出节点的神经网络模式识别模型。随机抽取每种熔痕的20组样品的主成分得分矩阵作为训练集,将每种熔痕的剩余10组主成分得分为测试数据,输入最终训练完成的模型进行识别,其识别准确率达到92.5%。实验结果表明采用PCA+BP神经网络的算法,可以较好地实现多股铜导线熔痕识别,为火灾物证鉴定工作提供了有力的工具。

论文目录

  • 0 引言
  • 1 材料与方法
  •   1.1 实验材料与仪器设备
  •   1.2 熔痕制备
  •   1.3 熔痕的处理
  •   1.4 金相参数选择与测量
  •     1.4.1 晶粒和气孔对象的选择与测量
  •     1.4.2 Cu2O的选择与测量
  •   1.5 金相参数数据PCA降维
  •   1.6 反向传播神经网络与熔痕金相组织分类识别
  • 2 结果与分析
  •   2.1 熔痕样品的金相组织特征参数
  •   2.2 熔痕样品的主成分分析
  •   2.3 BP神经网络的设计与熔痕分类结果
  • 3 结论
  • 文章来源

    类型: 期刊论文

    作者: 王冠宁,邓亮

    关键词: 定量金相,主成分分析,神经网络,分类识别,多股铜导线熔痕

    来源: 火灾科学 2019年01期

    年度: 2019

    分类: 工程科技Ⅰ辑,信息科技

    专业: 安全科学与灾害防治,自动化技术

    单位: 中国人民武装警察部队学院

    基金: 公安科技成果推广引导计划项目(2016TGYDWJXY16)

    分类号: TP183;X932

    页码: 49-59

    总页数: 11

    文件大小: 5557K

    下载量: 94

    相关论文文献

    • [1].基于优化神经网络的地质灾害监测预警仿真[J]. 计算机仿真 2019(11)
    • [2].基于进化神经网络的304不锈钢车削加工表面粗糙度预测[J]. 轻工机械 2019(06)
    • [3].时频联合长时循环神经网络[J]. 计算机研究与发展 2019(12)
    • [4].几种典型卷积神经网络的权重分析与研究[J]. 青岛大学学报(自然科学版) 2019(04)
    • [5].基于GA-BP神经网络异纤分拣机检测参数优化[J]. 棉纺织技术 2020(01)
    • [6].基于集成神经网络的织物主观风格预测研究[J]. 纺织科技进展 2020(01)
    • [7].试析神经网络技术在机械工程中的应用及发展[J]. 网络安全技术与应用 2020(02)
    • [8].一种深度小波过程神经网络及在时变信号分类中的应用[J]. 软件 2020(02)
    • [9].不同结构深度神经网络的时间域航空电磁数据成像性能分析[J]. 世界地质 2020(01)
    • [10].基于深度神经网络的航班保障时间预测研究[J]. 系统仿真学报 2020(04)
    • [11].基于生成对抗网络和深度神经网络的武器系统效能评估[J]. 计算机应用与软件 2020(02)
    • [12].基于循环神经网络的双轴打捆机智能换挡策略研究[J]. 安徽工程大学学报 2020(01)
    • [13].基于图神经网络的实体对齐研究综述[J]. 现代计算机 2020(09)
    • [14].基于改进的循环神经网络深度学习跌倒检测算法[J]. 电脑编程技巧与维护 2020(03)
    • [15].神经网络探索物理问题[J]. 物理 2020(03)
    • [16].基于GA-BP神经网络的城市用水量预测[J]. 现代电子技术 2020(08)
    • [17].基于深度神经网络的药物蛋白虚拟筛选[J]. 软件工程 2020(05)
    • [18].基于轻量级神经网络的人群计数模型设计[J]. 无线电工程 2020(06)
    • [19].高效深度神经网络综述[J]. 电信科学 2020(04)
    • [20].含磁场耦合忆阻神经网络放电行为研究[J]. 广西师范大学学报(自然科学版) 2020(03)
    • [21].基于神经网络及特征运算的老年人平衡能力分析[J]. 重庆工商大学学报(自然科学版) 2020(04)
    • [22].神经网络技术在机械工程中的应用及发展探析[J]. 科技创新与应用 2020(18)
    • [23].基于竞争神经网络的变电站巡视周期分类[J]. 科技创新与应用 2020(18)
    • [24].基于双向循环神经网络的语音识别算法[J]. 电脑知识与技术 2020(10)
    • [25].结合相似日与改进神经网络的短期光伏发电预测[J]. 广西电业 2020(04)
    • [26].基于神经网络的流感大数据分析[J]. 中华医学图书情报杂志 2020(03)
    • [27].长短时记忆神经网络在地电场数据处理中的应用[J]. 地球物理学报 2020(08)
    • [28].基于门控循环单元神经网络的公交到站时间预测[J]. 南通大学学报(自然科学版) 2020(02)
    • [29].鼠脑神经网络的同步辐射3D成像研究[J]. 核技术 2020(07)
    • [30].基于长短记忆神经网络的短期光伏发电预测技术研究[J]. 华北电力大学学报(自然科学版) 2020(04)

    标签:;  ;  ;  ;  ;  

    基于PCA-BP神经网络的多股铜导线熔痕定量金相识别方法研究
    下载Doc文档

    猜你喜欢