论对比法在高等数学教学中的应用

论对比法在高等数学教学中的应用

一、浅谈对比法在高等数学教学中的应用(论文文献综述)

李子萍,费秀海[1](2021)在《类比法在高等数学教学中的应用体会》文中指出本文结合教学实践,对类比法在高等数学教学中的应用进行探讨,旨在使学生掌握高等数学的基本概念和基本方法,提高运用高等数学知识解决实际问题的能力,并为学生学习专业知识打下必要的数学基础.

陆奕纯[2](2021)在《初等数学教学借鉴高等数学教学法的初探》文中研究表明高校教师在实际教学中发现初等数学与高等数学衔接方面存在问题,尤其是大一新生,一入学就面临着微积分等核心基础课程的学习,但是仍然只习惯于高中的教学模式,不适应高等数学的教学模式,为此,大学教师额外进行各种改革以迁就学生适应和过渡.另一方面,随着新课改的实施,在教学内容上已有高等数学下放的趋势,这就为高中教学过程中部分地采用大学的教学模式提供了机会.本文将从教学方法角度出发,初步探索一个新的研究方向:初等数学教学借鉴高等数学教学法.通过对当前大学和高中教学方法使用情况的访谈调查,根据所得数据分析两种教学方法在使用上的差异:一个是偏重习题训练,另一个是围绕基本概念进行教学.然后,本文结合访谈内容从理解性教学的角度,借鉴高等数学教学法对高中教学提出7种策略,建议以“思”代“练”来减少习题,通过探索创新来理解知识点.以高中教学内容“数列与数学归纳法”为例,仅采用“斐波那契数列”为例题,重组整章内容进行教学,强调基本概念和知识点的理解与拓展,从而实现两者在教学模式上的衔接.

王改珍[3](2021)在《职前数学教师专业知识结构及水平的实证研究》文中研究说明随着教师专业发展成为教师教育领域的研究热点,各国从对教师“量”的需求逐渐转变到对教师“质”的需求,其中一个核心的研究内容便是教师知识。教师知识是教师专业素质的重要组成部分,也是影响教师教学水平的重要因素。教师教育的质量决定着教育的质量,职前教师教育的质量又是确保教师教育质量的基础环节。职前教师需要具备怎样的专业知识结构和水平,才能满足高质量教育的人才需求,受到教育研究者和教育工作者的广泛关注。教师专业知识是教师专业发展的基础,对职前教师专业知识的研究可以反映教师专业知识的最初状态。本研究聚焦于职前数学教师的专业知识结构及水平,分为三个子问题:一、职前数学教师需要怎样的专业知识结构?通过访谈和调查,从一线教师的视角给出对合格数学教师需要具备的专业知识结构的看法,并将其作为职前数学教师专业知识结构的参考标准。该知识结构是教师主观层面的认识,也可称为教师期望的专业知识结构。二、职前数学教师专业知识的掌握水平如何?通过测试了解职前数学教师专业知识的现状,进而得出实际的专业知识结构,并利用水平划分描述职前数学教师专业知识的掌握程度。三、职前数学教师实际的专业知识结构与一线教师期望的专业知识结构是否一致?通过对比,探讨职前数学教师专业知识结构的合理性,进而明确职前数学教师未来的努力方向。本研究采用量化研究与质化研究相结合的方法,以量化研究为主,质化研究为辅。子问题一通过调查教师视角下各类专业知识的重要程度来了解合格数学教师需要的各类专业知识的权重情况。首先通过文献梳理和访谈构建出数学教师的专业知识框架,并以此编制调查问卷;然后对一线教师展开问卷调查,教师根据教学经验对各类专业知识进行赋权;最后根据调查数据的统计分析得出合格数学教师需要具备的专业知识结构,并通过访谈对量化结果进行补充和说明。子问题二通过测试了解职前数学教师专业知识的现状和掌握水平。首先通过整理历年教师资格考试《数学学科知识与教学能力》(高级中学)科目的真题,明确各类知识的考查比例、题型和分值;然后结合子问题一的调查结果,确定测试所考查的内容、题型及分值,对试题进行抽取、组合、制定评分标准;接着,选取1所部属师范大学、1所省属师范大学和2所省属师范学院的数学师范生作为调查对象,展开测试;最后根据测试数据的统计分析得出职前数学教师的实际专业知识结构及水平。子问题三是基于前两个子问题的数据分析结果,再结合教师访谈,探讨职前数学教师实际的专业知识结构、不同知识掌握水平下的职前数学教师专业知识结构与教师期望的专业知识结构的一致性和合理性。研究结论如下:(1)合格数学教师的专业知识结构中数学学科知识的权重最大。教师视角下的合格数学教师需要具备的三类专业知识按照权重大小依次是数学学科知识(45.20%)、数学教学知识(30.71%)、数学课程知识(24.09%)。该知识结构可划分为三种类型。不同群体教师对各类知识权重的看法基本一致。(2)职前数学教师对所考查的数学专业知识基本能够掌握。实际知识结构中数学学科知识的权重最大。参与本研究的职前数学教师专业知识的掌握程度由低到高可划分为四个水平:前水平、识记水平、关联水平和综合水平。不同类型学校的职前数学教师专业知识测试得分具有显着差异,得分由高到低分别为部属师范大学、省属师范大学、省属师范学院。(3)职前数学教师的实际知识结构中,各类知识的权重大小顺序与教师期望的专业知识结构一致,即职前数学教师的实际知识结构是合理的。知识掌握程度处在四个水平的职前数学教师的专业知识结构也是合理的。教师期望的学科知识权重低于职前数学教师的实际权重,教师期望的教学知识权重却高于职前数学教师的实际权重,导致这一现象的原因在于职前数学教师教学经验的缺乏。根据上述研究结论,对职前数学教师教育提出相关建议:(1)职前数学教师应以理论知识学习为主;(2)职前数学教师应提高教学知识储备。

沈中宇[4](2021)在《面向教师教育的数学知识研究 ——以S市高中数学教研员为例》文中研究指明百年大计,教育为本。教育大计,教师为本。教师培养的关键是教师教育,要改善教师教育的效果,教师教育者的作用无疑是至关重要的,因此,数学教师教育者在数学教师教育中发挥着重要的作用。近年来,数学教育研究者开始关注数学教师教育者的研究,其中,“面向教师教育的数学知识”(Mathematical Knowledge for Teaching Teachers,简称MKTT)理论为研究一般数学教师教育者所需要的数学知识提供了借鉴。但已有的研究中对于“面向教师教育的数学知识”仍然缺乏清晰准确的刻画,同时,相关研究主要集中在理论构建,相关的实证研究较少。基于以上原因,本文以面向教师教育的数学知识为研究主题,选取高中数学教研员作为研究对象,主要探讨以下三个研究问题:(1)构成面向教师教育的数学知识的要素有哪些?(2)高中数学教研员具备哪些面向教师教育的数学知识?(3)在数学教研活动中,高中数学教研员反映出哪些面向教师教育的数学知识?针对本研究的三个研究问题,将研究设计分为三个阶段,分别为文献分析与框架确立、问卷调查与深度访谈以及现场观察与案例分析。文献分析与框架确立阶段采用了专家论证法。首先通过文献分析梳理已有的数学教师教育者专业知识框架,接着通过对相关的成分和子类别的反复比较,构建初始的面向教师教育的数学知识框架,最后通过三轮专家论证得到最终的面向教师教育的数学知识框架。问卷调查与深度访谈阶段采用了问卷调查法和深度访谈法。其中选取了高中数学中重要的数学主题编制了调查问卷和访谈提纲,通过编码分析高中数学教研员的问卷回答和访谈实录,从而了解高中数学教研员具备的面向教师教育的数学知识。现场观察与案例分析采用了案例研究法。其中观察了不同的高中数学教研员的多次教研活动,在观察过程中对教研活动进行录音并在观测后对高中数学教研员进行访谈,对录音和访谈材料进行编码和统计,从而剖析高中数学教研员在教研活动中反映的面向教师教育的数学知识。本研究的基本结论是:1.构成面向教师教育的数学知识的要素包括4个成分与12个子类别。构成成分为学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识。学科内容知识包含的子类别为一般内容知识、专门内容知识和关联内容知识,教学内容知识包含的子类别为内容与学生知识、内容与教学知识和内容与课程知识,高观点下的数学知识包含的子类别为学科高等知识、学科结构知识和学科应用知识,数学哲学知识包含的子类别为本体论知识、认识论知识和方法论知识。2.高中数学教研员具备的面向教师教育的数学知识情况如下。(1)高中数学教研员在学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识4个成分中并不存在明显的短板;(2)高中数学教研员对不同知识成分的掌握存在一定差异,其中,在学科内容知识和教学内容知识2个方面掌握较好,而在高观点下的数学知识和数学哲学知识2个方面还有所欠缺;(3)高中数学教研员在各个知识成分中有以下具体理解:在学科内容知识方面,对于基本的概念、定理和公式的合理性以及不同概念、定理和公式之间的联系较为熟悉;在教学内容知识方面,对于学生有关特定数学内容学习的困难,不同数学内容的教授方式和相关数学内容在教科书中的编排理解较深;在高观点下的数学知识方面,能够对中学数学知识作出一定程度的推广、涉猎不同学科中数学知识的应用;在数学哲学知识方面,能够大致解释数学定义的基本作用和标准、数学研究的动力、数学证明的作用和价值以及数学的基本思想方法。(4)高中数学教研员在各个知识成分中有以下欠缺之处:在学科内容知识方面,对于定义的多元性、解释的多样性和联系的普遍性方面还有进步的空间;在教学内容知识方面,对于学生数学学习困难的细致理解、不同数学内容的深入教授和教学内容编排意图的全面考虑还有提升的余地;在高观点下的数学知识方面,从高观点理解中学数学知识、分析不同知识的联系和在不同学科中应用数学知识方面还有较多需要完善的地方;在数学哲学知识方面,还不能形成系统的理解。3.在数学教研活动中,高中数学教研员反映出的面向教师教育的数学知识情况如下。(1)高中数学教研员反映的面向教师教育的数学知识大部分属于教学内容知识和学科内容知识,小部分属于数学哲学知识和高观点下的数学知识。(2)高中数学教研员在数学教研活动中的主要知识来源为一般内容知识、内容与教学知识、学科高等知识和方法论知识。(3)高中数学教研员在数学教研活动中反映的面向教师教育的数学知识主要有:在学科内容知识方面有数学中的基本概念、定理、公式和性质及其由来、表征、证明及解释;不同数学概念、定理、公式之间的联系。在教学内容知识方面有学生对特定数学内容理解存在的困难;不同数学内容的引入、辨析、应用和小结的教学方法;特定数学内容在课程标准中的要求和在教科书中的编排。在高观点下的数学知识方面有中学数学课程中的数学概念在高等数学中的推广;高观点下不同数学概念之间的联系;数学知识在现代科学和实际生活中的应用。在数学哲学知识方面有对数学定义的认识;对数学认识过程的理解;推理论证在数学中的作用;数学研究的思想方法。本研究对于教师教育者专业标准的制订、数学教师教育者专业培训的设计和数学教师专业发展项目的规划有一定启示,后续可以在数学教师教育者的专业知识、数学教师教育者的专业发展和数学教师教育者的工作实践等方面进一步开展研究。

王杰[5](2021)在《高观点下初中方程教学的主要问题与解决策略》文中研究说明方程是代数思想的起源。面对一个未知的数,我们希望求解它,那么我们利用和未知量有关的限制条件,再结合等量关系组成等式,我们就得到了有关未知量方程或者方程组。有了方程就相当于正式承认变量或者未知数能够作为一个独立的对象。从方程在课程标准中的变化来看,学生不仅仅需要掌握方程的解法,同时还需要学生掌握方程与不等式和函数之间的联系,也就是用函数的观点去看方程。最后需要让学生体会方程思想在解决问题中的便利性,注重培养学生逆向思维。同时也要注重借用方程学习的这一过程,培养学生的核心素养。本文先说明了方程这一内容在课程标准中的变化,再结合方程发展的历史,重点介绍了几种方程的解法,例如公式法,配方法、因式分解法、换元法,同时也介绍了一些方程组的解法。例如克拉默法则、矩阵法等等。这一部分是高等数学中的方程知识,作为教师必须要掌握这部分内容才能将“高观点”更好的融入教学。教师借助在教学中融入“高观点”,提高学生的核心素养和关键能力,为学生后续的学习产生深远的影响。为了更加详细的掌握学习者在学习方程过程中所遇到的问题,采用测试卷和调查问卷结合的方式,分析出真实存在的问题,为教师的教学提供必要的帮助。测试卷将设置五种题型,考察学习者对方程知识的掌握程度。通过分析测试卷,所获得的结论是:(1)有部分学生对生活中或者其他学科中存在的等量关系不太熟悉。(2)学生对二次方程的根的判断和对含有参数的方程组成立条件的判断存在模糊不清的现象。(3)学生在解方程时,方程的解法过于单一,并且对于解方程的通性、通法掌握有点欠缺。(4)学生对方程概念的理解也存在疏忽。(5)学生在方程应用题部分,尤其是对函数与方程结合的应用题存在不少问题。调查问卷主要是为了分析出学生在学习方程时会遇到的问题,调查问卷所获得的结论是:(1)有部分学生在课堂方程学习过程中缺少思考,没有对方程进行一题多解的习惯。(2)学生在做方程内容的作业时,存在不认真完成,不检验方程解的情况。(3)学生在课后没有认真复习课上学习到的方程的解法以及相关概念。(4)部分学生对自己存在错误的方程习题不及时进行错题整理与归纳总结。将“高观点”融入课堂教学的实际执行者是教师,因此,本文采用调查问卷的方式,调查不同学校和年级的中学教师将“高观点”融入教学的实际情况。通过调查后所获得的结论为:(1)大部分的教师都认为“高观点”对中学数学是存在影响的,对于教材分析也会联系到“高观点”。(2)有部分教师会去阅读渗透“高观点”的数学参考书。(3)部分教师会利用已经下放到教材里的高等数学的知识去解决有关方程问题。(4)总的来看,新教师比老教师更乐于利用“高观点”。最后结合对学生和教师的调查结果提出一些将“高观点”融入教学的建议,包括等式概念的教学、方程解法的教学、方程应用的教学以及函数、方程、不等式关系的教学。同时为了更好的进行这些教学又对中学学校和一线中学教师提出一些必要的建议。

张峰[6](2020)在《类比思想在不定积分计算方法中的运用探析》文中提出类比思想是从事数学研究过程中一项重要的思维工具。本文针对高等数学教学中不定积分的学习和计算这一难点和重点,探究类比思想在其中的应用及效果,提出了类比思想的思维模型,然后通过多个计算案例对这几种类比方法的运用做了详尽的演示与归纳,并以试验的形式分析了类比思想运用于不定积分计算时的效果。实验结果表明:在不定积分的计算过程中运用类比思想能够明显提高解题的正确率与效率。

张轶凤[7](2020)在《小学高段数学讨论式教学法的应用优化策略研究》文中认为小学数学课是一门使学生掌握必备的数学基础知识和基本技能,培养学生的创新意识、抽象思维、实践能力和推理能力,促进学生在情感、态度以及价值观等方面发展的课程。新课标和新一轮基础教育课程改革都强调应在教学中突出学生的主体地位,培养学生的合作交流能力。新课标明确提出了要重视学生在学习中的主体地位,学生在问题解决方面要学会与他人合作,体验解决问题方法的多样性;在情感态度与价值观方面学生要养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯。新课改鼓励学生在学习中主动参与、乐于探究、勤于动手,提倡培养学生获取新知识的能力、搜集和处理信息的能力、分析和解决问题的能力以及交流与合作的能力。学生在教师指导下自学、自讲,以讨论为主的教学方法被称为讨论式教学法,因其能够突出学生在教学中的主体地位,而备受教师青睐。在小学数学课堂中引入讨论式教学法,正是适应新课改、实践新课标理念的有益尝试。在课堂上运用讨论式教学法,能够调动学生学习的积极性,启迪学生的思维,提高学生的能力,促进学生全面发展。虽然讨论式教学法有较高的价值和意义,但是它在实施过程中还存在着一些问题,比如讨论问题设置不合理、讨论过程中教师缺位、学生参与讨论的积极性不高以及讨论流于形式等。为此,笔者针对目前小学高段数学讨论式教学法存在的问题进行研究,旨在提出有效的对策,从而对讨论式教学法的应用进行优化提升。本论文主要由四部分构成:第一部分为绪论部分,主要对选题的背景、研究的理论意义与现实意义进行了阐述,用文献综述的方式总结了国内外对讨论式教学法的研究现状,这为笔者接下来的研究提供理论基础。此外,本章还提出了本研究所采用的研究方法。第二部分为理论概述部分,主要根据前人的理论基础,对“讨论式教学法”、“小学数学教学”和“小学高段”这三个名词进行概念界定,对当前小学数学课堂讨论式教学法的组织形式进行了简单的介绍。本章还总结了小学数学教学中运用讨论式教学法的价值,以及讨论式教学法的四大特征:针对性、自主性、互动性和全纳性。第三部分为实施现状,通过问卷调查、访谈调查和案例分析三种研究方法,从教师、学生和课堂教学三个角度对当前讨论式教学法的实施现状进行分析。第四部分为问题与成因分析,通过分析讨论式教学法的实施现状,总结了小学高段数学讨论式教学法应用中存在的问题,并对这些问题进行了成因分析。第五部分为优化策略,在对当前小学数学讨论式教学法应用中存在的问题及原因分析的基础上,论述了解决当前小学高段数学讨论式教学法问题的策略。这一部分是文章的重点部分,针对讨论式教学法在应用中存在的问题,主要从讨论前、讨论中及讨论后三个方面提出了讨论式教学法的优化策略。

刘奕[8](2020)在《5G网络技术对提升4G网络性能的研究》文中进行了进一步梳理随着互联网的快速发展,越来越多的设备接入到移动网络,新的服务与应用层出不穷,对移动网络的容量、传输速率、延时等提出了更高的要求。5G技术的出现,使得满足这些要求成为了可能。而在5G全面实施之前,提高现有网络的性能及用户感知成为亟需解决的问题。本文从5G应用场景及目标入手,介绍了现网改善网络性能的处理办法,并针对当前5G关键技术 Massive MIMO 技术、MEC 技术、超密集组网、极简载波技术等作用开展探讨,为5G技术对4G 网络质量提升给以了有效参考。

魏薇[9](2020)在《基于成因分析的大学生数学学习困难转化研究 ——以结构教学法为例》文中研究表明数学学习困难一直都在基础教育领域备受关注,近几年来更引起高校的广泛关注。国内外对中小学数学学习困难的评估和诊断、分类和成因分析以及补救和转化工作都作了较为系统的研究,并取得颇有价值的成果。但是,大学生正处于青春期向成人期过渡这一特殊阶段,无法直接利用初等数学的一些研究来指导高等数学的教育实践。那么在大学阶段,造成“数学学习困难”的原因有哪些?有什么有效的教学方法能够帮助实现大学生数学学习困难的转化呢?笔者总结了以往学者大量研究成果的基础上,对大学生数学学习困难进行了再定义和成因分析,并根据这些成因寻找切实有效的教学方法,在大学生数学学习困难领域开展教学转化研究。具体来说,整个研究分三个阶段:1.收集与大学生数学学习困难相关的文献资料,从各研究中总结其学习特点进行再定义;通过文献分析初步整理出大学生数学学习困难原因主要分为以下三个维度:教学因素、学生心理和外部环境因素,其中学生心理作为内部动机是主导因素,也应是教学转化的主要方向。可细分为学习动机与归因、学习思维与习惯、学习方法与策略三个方面;通过教学策略研究发现“结构教学法”能有效激发学生学习的自主性,增强联系新知旧知及各方面数学素养的能力。因此提出将“结构教学法”应用于高等数学课堂,探索其对大学生数学学习困难转化的效果。2.通过对各高校问卷调查的数据进行因子分析,验证了各因子与成因分析基本一致,说明成因分析中分类的准确性。并利用访谈共同为下一阶段的教学设计做指导。3.通过“结构教学法”在高等数学课堂中进行教学设计与实施,对比学生在动机与归因、思维与习惯、方法与策略方面发生的变化,来说明转化研究的实际效果。研究结果表明,“结构教学法”确实能让大部分学生对数学的学习态度有所转变,对自身的评价更为准确,对学习方法会适当作出调整,学习数学也不再只停留在知识表面,而是挖掘一切与其有关的因素,这证明他们的学习兴趣也得到了一定的激发。进一步说明,“结构教学法”对于激发学生动机、转变学习方法、培养良好学习习惯是有一定效果的。也用事实证明了大学生数学学习困难只是一种暂时的状态,通过合适、有效的教学转化,可以使学生们的潜能得以发挥,改变数学学习困难的局面。因此,将“结构教学法”应用于大学生数学学习困难的转化研究是有积极意义的,希望本文为该领域的研究提供有价值的参考信息。

胡欣[10](2020)在《高等数学知识对职前教师数学教学水平影响的研究》文中指出近年来,高等数学与中学数学教学脱节的观点在不少一线教师中兴起,并渐渐演化为了对现有数学教师教育课程的批评。进入21世纪后,高观点课程在数学教师教育中逐渐受到重视,高观点思维渗透到了课程改革中,在一定程度上回应了一线教师的质疑。那么,究竟高等数学知识对中学数学教师的教学是否存在正面的影响?高观点课程是否解决了高等数学与中学教学脱节的困惑?这些问题,是数学教学改革所需要面对的。为了探讨高等数学知识对教师教学的影响,本研究分析了已有的教师知识理论,发现鲍尔(Ball)等开发的面向教学的数学知识(Mathematic Knowledge for Teaching,简称MKT)可以较好的表征数学教师的教学水平。由此,本研究选取D师范大学的职前数学教师为研究对象,以MKT问卷为工具表征研究对象的数学教学水平,以教师资格证考试的相关题目测量研究对象的高等数学知识,通过问卷量化测试与访谈的辅助研究,分析了高等数学知识对受试者MKT表现的影响,并通过分组比较,讨论了大学开设的“高观点下的中学数学”课程所发挥的作用。通过对数据的分析,得出了如下结论:1.受试者的MKT整体水平及高等数学知识水平均不容乐观,且在解题思路上存在着明显的路径依赖。2.高等数学知识有效地影响了受试者MKT中的专门内容知识(Specialized Content Knowledge,简称SCK)与一般内容知识(Common Content Knowledge,简称CCK),高等数学知识对数学教师的教学水平中发挥了一定程度的正向作用,但这种作用是间接的、内隐的。3.对于MKT水平较高的受试者而言,高等数学知识对其SCK的影响程度可能更大。受试者MKT水平的高低,在一定程度上影响了高等数学知识在数学教学实践中发挥的作用。4.接受了高观点下中学数学课程的受试者,高等数学对其SCK的影响程度更大,说明高观点下的中学数学课程发挥了作用。最后,根据以上结论,对数学教师的培育体系提出了一些建议。

二、浅谈对比法在高等数学教学中的应用(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、浅谈对比法在高等数学教学中的应用(论文提纲范文)

(1)类比法在高等数学教学中的应用体会(论文提纲范文)

1 类比法应用于高等数学概念教学
2 类比法应用于极限计算教学
3 类比法应用于不定积分计算教学
4 结 语

(2)初等数学教学借鉴高等数学教学法的初探(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究背景
    1.2 研究现状
        1.2.1 传统应试思想仍普遍存在
        1.2.2 初等数学与高等数学的衔接问题
        1.2.3 初等数学与高等数学的内容衔接
    1.3 文献综述
        1.3.1 中学教育与高等教育的衔接
        1.3.2 中学数学与高等数学教学的衔接与策略
    1.4 研究问题
    1.5 研究意义
第2章 初等数学与高等数学教学方法的调查与分析
    2.1 数据分析
    2.2 调查结果再分析
    2.3 高中数学与高等数学教学方法使用的比较
第3章 借鉴高等数学教学法的高中数学教学策略研究
    3.1 类化教学
    3.2 多角度理解本质
        3.2.1 语言表达角度
        3.2.2 表格角度
        3.2.3 几何(图像)角度
        3.2.4 代数角度
    3.3 多知识点串联
    3.4 趣味引申
    3.5 合理运用阅读材料和探究与实践
    3.6 培养分析的思维方式
    3.7 高中与高等数学教师加强沟通
第4章 借鉴高等数学教学法的高中数学教学
    4.1 斐波那契数列的起源
    4.2 斐波那契数列与递推关系
    4.3 斐波那契数列与极限
    4.4 斐波那契数列与通项公式
    4.5 斐波那契数列与前n项和
    4.6 斐波那契数列与算法
第5章 借鉴高等数学教学法的高中数学教学拓展
    5.1 递推数列与函数
    5.2 递推数列与方程
    5.3 换元法
    5.4 极限思想与几何
第6章 总结与展望
    6.1 总结
    6.2 优势与不足
    6.3 展望
参考文献
附录 A 高等数学的课时调查
附录 B 初等数学的课时调查
附录 C 访谈提纲
致谢

(3)职前数学教师专业知识结构及水平的实证研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    第一节 研究背景
    第二节 研究问题
    第三节 研究意义
    第四节 论文结构
第二章 文献综述
    第一节 教师知识
        一.知识的内涵及分类
        二.教师知识的分类
    第二节 数学教师知识
        一.数学教师学科知识
        二.数学教师学科教学知识
        三.数学教师知识相关文献的量化分析
    第三节 职前数学教师知识
        一.职前数学教师知识的现状及来源
        二.职前数学教师知识中某类具体知识
        三.职前数学教师综合性知识和技能
        四.中外职前数学教师知识的对比
    第四节 本章小结
第三章 研究设计与实施
    第一节 研究思路与方法
        一.研究思路
        二.研究方法
    第二节 相关概念界定
        一.教师知识
        二.数学教师专业知识
        三.职前教师
        四.知识结构
    第三节 理论基础与框架
        一.数学教师专业知识分类框架构建
        二.职前数学教师专业知识分析层次建构
    第四节 研究的具体过程
第四章 教师视角下的合格数学教师专业知识结构
    第一节 教师视角下合格数学教师专业知识结构描述分析
    第二节 教师视角下合格数学教师专业知识结构聚类分析
    第三节 不同群体教师对合格数学教师各类知识权重看法的量化分析
        一.不同教龄教师对合格数学教师各类知识权重看法的差异分析
        二.不同职称教师对合格数学教师各类知识权重看法的差异分析
        三.不同称号教师对合格数学教师各类知识权重看法的差异分析
        四.不同学历教师对合格数学教师各类知识权重看法的差异分析
    第四节 教师视角下合格数学教师各类知识权重看法的质化分析
    第五节 本章小结
第五章 职前数学教师专业知识现状分析
    第一节 职前数学教师专业知识掌握情况的水平划分
        一.职前数学教师专业知识测试成绩整体描述
        二.职前数学教师测试总成绩的水平分布
        三.职前数学教师主观题作答情况的水平分析
    第二节 职前数学教师专业知识的实际结构
    第三节 不同类型学校职前数学教师专业知识得分情况的差异分析
        一.不同类型学校职前数学教师总成绩的差异分析
        二.不同类型学校职前数学教师各类知识得分的差异分析
    第四节 不同性别职前数学教师得分情况的差异分析
        一.不同性别职前数学教师总成绩的差异分析
        二.不同性别职前数学教师各类知识得分的差异分析
    第五节 各类数学专业知识之间的关系分析
        一.各类数学专业知识得分之间的相关性分析
        二.数学学科知识对数学教学知识的影响分析
        三.数学学科知识对数学课程知识的影响分析
    第六节 本章小结
第六章 职前数学教师专业知识实际结构与期望结构的对比分析
    第一节 职前数学教师专业知识实际结构与期望结构的整体比较
    第二节 不同水平下职前数学教师专业知识实际结构与期望结构的比较
        一.前水平的职前数学教师专业知识结构的比较
        二.识记水平的职前数学教师专业知识结构的比较
        三.关联水平的职前数学教师专业知识结构的比较
        四.综合水平的职前数学教师专业知识结构的比较
    第三节 职前数学教师专业知识结构的讨论
    第四节 本章小结
第七章 结论与建议
    第一节 研究的结论
    第二节 研究的建议
    第三节 研究的局限性与展望
参考文献
附录
    附录1 中学数学教师知识结构状况调查与访谈提纲
    附录2 数学教师专业知识分类框架
    附录3 中学数学教师知识权重调查问卷
    附录4 教师资格考试2014-2018 试题汇总
    附录5 职前数学教师专业知识与基本能力测试
    附录6 职前数学教师专业知识与基本能力测试参考答案
    附录7 职前数学教师专业知识结构及其培养策略访谈提纲
后记
在学期间公开发表论文及着作情况

(4)面向教师教育的数学知识研究 ——以S市高中数学教研员为例(论文提纲范文)

摘要
ABSTRACT
第1章 绪论
    1.1 研究背景
        1.1.1 教师教育者的专业发展需要关注
        1.1.2 数学教师教育者的研究值得重视
        1.1.3 数学教师教育者的专业知识有待探索
    1.2 研究问题
    1.3 研究意义
        1.3.1 理论意义
        1.3.2 实践意义
    1.4 论文结构
第2章 文献述评
    2.1 数学教师教育者的专业知识
        2.1.1 数学教师教育者的专业知识框架
        2.1.2 数学教师教育者的专业知识测评
        2.1.3 文献小结
    2.2 数学教师教育者的专业发展
        2.2.1 数学教师教育者的专业发展框架
        2.2.2 数学教师教育者的专业发展调查
        2.2.3 文献小结
    2.3 数学教师教育者的工作实践
        2.3.1 数学教师教育课堂的学习任务框架
        2.3.2 数学教师教育课堂的学习任务实践
        2.3.3 文献小结
    2.4 文献述评总结
第3章 研究方法
    3.1 研究设计
        3.1.1 文献分析与框架确立
        3.1.2 问卷调查与深度访谈
        3.1.3 现场观察与案例分析
    3.2 研究对象
        3.2.1 专家论证对象
        3.2.2 问卷调查对象
        3.2.3 深度访谈对象
        3.2.4 案例研究对象
    3.3 研究工具
        3.3.1 论证手册
        3.3.2 调查问卷
        3.3.3 访谈提纲
        3.3.4 观察方案
    3.4 数据收集
        3.4.1 专家论证
        3.4.2 问卷调查
        3.4.3 深度访谈
        3.4.4 现场观察
    3.5 数据分析
        3.5.1 专家论证
        3.5.2 问卷与访谈
        3.5.3 现场观察
第4章 研究结果(一):面向教师教育的数学知识框架
    4.1 文献分析
        4.1.1 已有框架选取
        4.1.2 相关成分析取
        4.1.3 相关类别编码
    4.2 框架构建
        4.2.1 相关类别合并
        4.2.2 相应成分生成
        4.2.3 初步框架构建
    4.3 框架论证
        4.3.1 第一轮论证
        4.3.2 第二轮论证
        4.3.3 第三轮论证
第5章 研究结果(二):高中数学教研员具备的面向教师教育的数学知识
    5.1 学科内容知识
        5.1.1 一般内容知识
        5.1.2 专门内容知识
        5.1.3 关联内容知识
    5.2 教学内容知识
        5.2.1 内容与学生知识
        5.2.2 内容与教学知识
        5.2.3 内容与课程知识
    5.3 高观点下的数学知识
        5.3.1 学科高等知识
        5.3.2 学科结构知识
        5.3.3 学科应用知识
    5.4 数学哲学知识
        5.4.1 本体论知识
        5.4.2 认识论知识
        5.4.3 方法论知识
    5.5 总体分析
        5.5.1 学科内容知识
        5.5.2 教学内容知识
        5.5.3 高观点下的数学知识
        5.5.4 数学哲学知识
第6章 研究结果(三):数学教研活动中反映的面向教师教育的数学知识
    6.1 案例1
        6.1.1 第一轮观察:平均值不等式
        6.1.2 第二轮观察:对数的概念
        6.1.3 案例1 总体分析
    6.2 案例2
        6.2.1 第一轮观察:幂函数的概念
        6.2.2 第二轮观察:函数的基本性质
        6.2.3 案例2 总体分析
    6.3 案例3
        6.3.1 第一轮观察:幂函数的概念
        6.3.2 第二轮观察:出租车运价问题
        6.3.3 案例3 总体分析
    6.4 案例4
        6.4.1 第一轮观察:反函数的概念
        6.4.2 第二轮观察:反函数的图像
        6.4.3 案例4 总体分析
    6.5 跨案例分析
        6.5.1 学科内容知识
        6.5.2 教学内容知识
        6.5.3 高观点下的数学知识
        6.5.4 数学哲学知识
        6.5.5 案例总体分析
第7章 研究结论及启示
    7.1 研究结论
        7.1.1 面向教师教育的数学知识框架
        7.1.2 高中数学教研员具备的面向教师教育的数学知识
        7.1.3 高中数学教研活动中反映的面向教师教育的数学知识
    7.2 研究启示
        7.2.1 教师教育者的专业标准制订需要关注学科性
        7.2.2 数学教师教育者的专业培训需要提升针对性
        7.2.3 数学教师专业发展项目规划需要增加多元性
    7.3 研究局限
    7.4 研究展望
        7.4.1 拓展数学教师教育者的专业知识研究
        7.4.2 深入数学教师教育者的专业发展研究
        7.4.3 延伸数学教师教育者的工作实践研究
参考文献
附录
    附录1 论证手册(第一轮)
    附录2 论证手册(第二轮)
    附录3 论证手册(第三轮)
    附录4 调查问卷(第一版)
    附录5 调查问卷(第二版)
    附录6 调查问卷(第三版)
    附录7 调查问卷(第四版)
    附录8 调查问卷(第五版)
    附录9 访谈提纲
    附录10 观察方案
作者简历及在学期间所取得的科研成果
致谢

(5)高观点下初中方程教学的主要问题与解决策略(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 研究背景
    1.2 研究问题
    1.3 研究意义
    1.4 研究方法
第二章 文献综述与理论基础
    2.1 相关概念界定
    2.2 国内外研究现状
        2.2.1 国外研究现状
        2.2.2 国内研究现状
        2.2.3 文献述评
    2.3 理论基础
        2.3.1 数学与数学教育相关理论
        2.3.2 教师专业发展相关理论
第三章 方程的发展及教学要求
    3.1 方程的发展历史
    3.2 初中课程标准中有关方程的内容
    3.3 方程的教学意义
第四章 高观点下对初中方程的概念及主要解法的解读
    4.1 方程概念与分类
        4.1.1 等式的定义
        4.1.2 关于方程的定义
        4.1.3 方程的分类
    4.2 方程同解定理
        4.2.1 同解方程的原理
        4.2.2 导出方程原理
    4.3 方程解法综述
        4.3.1 方程和方程组解法的一般原理
        4.3.2 公式法
        4.3.3 因式分解法
        4.3.4 换元法
        4.3.5 方程组的解法
    4.4 方程应用及其应用题
    4.5 方程与函数、不等式关系分析
        4.5.1 不等式的定义及性质
        4.5.2 三者之间的关系
第五章 高观点下对初中生方程学习现状的调查及分析
    5.1 调查方案的设计与实施
        5.1.1 调查目的
        5.1.2 调查内容
        5.1.3 调查对象
        5.1.4 调查实施过程
    5.2 调查的结果分析
        5.2.1 测试卷的情况分析
        5.2.2 测试卷的调查结论
        5.2.3 调查问卷的结果分析
        5.2.4 问卷调查的结论
    5.3 教师访谈
第六章 中学教师利用“高观点”指导教学的调查及分析
    6.1 调查目的及意义
    6.2 调查对象
    6.3 信度、效度分析
        6.3.1 信度分析
        6.3.2 效度分析
    6.4 调查结果及分析
第七章 高观下提高初中方程教学质量的策略与建议
    7.1 关于方程概念的教学
    7.2 关于方程解法的教学
    7.3 关于方程应用的教学
    7.4 关于方程与函数、不等式关系的教学
第八章 结论和建议
    8.1 结论
    8.2 建议
        8.2.1 对一线中学数学教师的建议
        8.2.2 对中学学校的建议
参考文献
附录1:测试卷
附录2:初中生方程学习现状调查问卷
附录3:教师采用高观点进行教学现状调查问卷
致谢

(7)小学高段数学讨论式教学法的应用优化策略研究(论文提纲范文)

摘要
Abstract
绪论
    (一)问题的提出
    (二)研究的意义
    (三)文献综述
    (四)研究思路与研究方法
一、小学数学讨论式教学法的理论概述
    (一)概念界定
    (二)理论基础
    (三)小学数学教学中运用讨论式教学法的价值
    (四)小学数学教学中讨论式教学法的特征
    (五)当前小学高段数学课讨论式教学法的主要组织形式
二、小学高段数学讨论式教学法的实施现状
    (一)问卷调查
    (二)访谈调查
    (三)案例分析
三、小学高段数学讨论式教学法应用中的问题及成因分析
    (一)当前小学高段讨论式教学法应用中的问题
    (二)问题的成因分析
四、小学高段数学讨论式教学法的应用优化策略
    (一)小学高段数学讨论前的准备策略
    (二)小学高段数学讨论中的实施策略
    (三)小学高段数学讨论后的提升策略
研究反思与展望
参考文献
附录
致谢

(8)5G网络技术对提升4G网络性能的研究(论文提纲范文)

引言
1 4G网络现处理办法
2 4G网络可应用的5G关键技术
    2.1 Msssive MIMO技术
    2.2 极简载波技术
    2.3 超密集组网
    2.4 MEC技术
3 总结

(9)基于成因分析的大学生数学学习困难转化研究 ——以结构教学法为例(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究背景
    1.2 研究问题
    1.3 研究对象
    1.4 研究目的
    1.5 研究意义
        1.5.1 理论意义
        1.5.2 现实意义
    1.6 研究方法
第2章 文献综述与相关理论
    2.1 学习困难的研究发展历程
    2.2 国内外大学生数学学习困难相关研究
        2.2.1 国外大学生数学学习困难相关研究
        2.2.2 国内大学生数学学习困难相关研究
    2.3 大学生数学学习困难概念界定
    2.4 大学生数学学习困难成因分析和转化策略分析
        2.4.1 大学生数学学习困难成因分析
        2.4.2 大学生数学学习困难转化策略分析
    2.5 结构教学法及理论基础
        2.5.1 高等数学结构教学法的提出
        2.5.2 结构教学法理论基础
        2.5.3 结构教学法在高等数学课堂应用的实际意义
        2.5.4 结构教学法的操作注意事项
第3章 大学生数学学习困难调查与分析
    3.1 研究假设
    3.2 可行性分析
    3.3 被试选取
    3.4 研究工具与施测
        3.4.1 《高等数学学习困难调查问卷》
        3.4.2 《高等数学教学方法访谈提纲》
    3.5 统计方法
第4章 大学生数学学习困难因子分析与访谈分析
    4.1 因子分析
    4.2 访谈分析
第5章 结构化教学设计案例研究——以无穷小为例
    5.1 结构化教学程序设计
    5.2 结构化教学过程设计
    5.3 结构化教学评价与访谈
第6章 研究结论
    6.1 研究的主要结论
    6.2 研究的创新之处
    6.3 研究的局限之处
    6.4 展望
参考文献
附录 A《高等数学学习困难调查问卷》
附录 B《高等数学教学方法访谈提纲》
致谢

(10)高等数学知识对职前教师数学教学水平影响的研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究缘起
    1.2 研究问题
    1.3 研究意义
    1.4 论文结构
    1.5 概念界定
第2章 文献综述
    2.1 关于数学教师知识的研究
        2.1.1 教师学科教学知识的研究
        2.1.2 教师学科内容知识的研究
        2.1.3 数学教师的PCK与 SMK
        2.1.4 MKT:表征数学教学水平的有力工具
        2.1.5 MKT的跨国应用
    2.2 理论基础:高等数学知识对教师教学的影响
    2.3 小结
第3章 研究设计
    3.1 研究思路
    3.2 研究方法
        3.2.1 问卷调查法
        3.2.2 访谈调查法
    3.3 测试与访谈的实施
        3.3.1 正式测试
        3.3.2 访谈
    3.4 数据编码
第4章 研究结果的分析与讨论
    4.1 受试者在测试中的整体表现
    4.2 受试者在问卷各类知识上的具体表现
        4.2.1 受试者在高等数学知识上的表现
        4.2.2 受试者在CCK上的表现
        4.2.3 受试者在SCK上的表现
        4.2.4 受试者在HCK上的表现
        4.2.5 受试者在KCS上的表现
        4.2.6 受试者在KCT与 KCC上的表现
    4.3 高等数学知识对受试者MKT的影响
        4.3.1 高等数学知识对受试者MKT水平的整体影响
        4.3.2 高等数学知识对受试者SMK各子类知识的影响
        4.3.3 对一线教师“高等数学无用”观点的深入剖析
    4.4 高观点课程的意义
第5章 研究的结论及启示
    5.1 研究结论
        5.1.1 受试者在测试中表现不佳
        5.1.2 高等数学知识对职前教师MKT存在积极影响
        5.1.3 一线教师的“高等数学无用”观点源于路径依赖与知识遗忘
        5.1.4 高观点课程加强了高等数学知识与教学实践的联系
    5.2 研究启示
参考文献
附录
致谢

四、浅谈对比法在高等数学教学中的应用(论文参考文献)

  • [1]类比法在高等数学教学中的应用体会[J]. 李子萍,费秀海. 数学学习与研究, 2021(29)
  • [2]初等数学教学借鉴高等数学教学法的初探[D]. 陆奕纯. 上海师范大学, 2021(07)
  • [3]职前数学教师专业知识结构及水平的实证研究[D]. 王改珍. 东北师范大学, 2021(09)
  • [4]面向教师教育的数学知识研究 ——以S市高中数学教研员为例[D]. 沈中宇. 华东师范大学, 2021(08)
  • [5]高观点下初中方程教学的主要问题与解决策略[D]. 王杰. 合肥师范学院, 2021(09)
  • [6]类比思想在不定积分计算方法中的运用探析[J]. 张峰. 遵义师范学院学报, 2020(05)
  • [7]小学高段数学讨论式教学法的应用优化策略研究[D]. 张轶凤. 西南大学, 2020(01)
  • [8]5G网络技术对提升4G网络性能的研究[J]. 刘奕. 数码世界, 2020(04)
  • [9]基于成因分析的大学生数学学习困难转化研究 ——以结构教学法为例[D]. 魏薇. 上海师范大学, 2020(07)
  • [10]高等数学知识对职前教师数学教学水平影响的研究[D]. 胡欣. 东北师范大学, 2020(06)

标签:;  ;  ;  ;  ;  

论对比法在高等数学教学中的应用
下载Doc文档

猜你喜欢