论文摘要
利用变量分离法与齐次平衡原理相结合的组合方法研究了一类非线性时间分数阶耦合型扩散系统,获得了该系统的各类精确解,并讨论了这些解的渐进行为以及有界性、稳定性和衰减性等动力学性质。为了能够直观地展示这些解的动力学形态,利用Maple软件绘制出了部分具有代表性的精确解随时间演化的三维坐标图。
论文目录
文章来源
类型: 期刊论文
作者: 张慧,谢绍龙
关键词: 齐次平衡法,变量分离法,精确解
来源: 玉溪师范学院学报 2019年03期
年度: 2019
分类: 社会科学Ⅱ辑,基础科学
专业: 数学
单位: 重庆师范大学数学科学学院,玉溪师范学院商学院
基金: 国家自然科学基金项目“积分分支法和混合函数法在求解非线性发展方程方面的扩展及应用研究”(项目编号:11361023)
分类号: O172
页码: 1-8
总页数: 8
文件大小: 1032K
下载量: 10
相关论文文献
- [1].非牛顿流体在多孔介质和霍尔电流效应下的几类精确解[J]. 安徽师范大学学报(自然科学版) 2016(06)
- [2].Sharma-Tasso-Olver方程的新精确解研究[J]. 赤峰学院学报(自然科学版) 2019(04)
- [3].(3+1)维extended Jimbo-Miwa方程的精确解[J]. 数学的实践与认识 2019(15)
- [4].利用一类辅助函数方法求非线性发展方程精确解[J]. 赤峰学院学报(自然科学版) 2009(01)
- [5].修正的Kuramoto-Sivashinsky方程的显式精确解[J]. 西北大学学报(自然科学版) 2009(01)
- [6].二阶非牛顿流体蠕流精确解[J]. 力学季刊 2008(03)
- [7].极限平衡分析的精确解法与国内外几种常用计算方法的分析比较[J]. 矿冶工程 2013(01)
- [8].非线性薛定谔方程的新精确解[J]. 西北师范大学学报(自然科学版) 2008(01)
- [9].非线性Landau-Ginburg-Higgs方程的新精确解[J]. 数学的实践与认识 2020(12)
- [10].柱(球)非线性薛定谔方程的精确解[J]. 河南科技大学学报(自然科学版) 2018(02)
- [11].一类非线性耗散方程组的不变子空间及其精确解[J]. 数学的实践与认识 2015(22)
- [12].Konopelchenko-Dubrovsky方程新的精确解及其计算机机械化实现[J]. 唐山师范学院学报 2017(05)
- [13].像金银匠那样劳作着[J]. 幸福 2019(12)
- [14].几个高阶非线性方程的显式精确解[J]. 湖南理工学院学报(自然科学版) 2014(02)
- [15].一类板方程的群分析与精确解[J]. 工程数学学报 2013(05)
- [16].一类非线性薛定谔方程球面上的精确解[J]. 韶关学院学报 2012(04)
- [17].利用函数变换构造非线性发展方程新的复合型精确解[J]. 工程数学学报 2010(05)
- [18].(2+1)维扩展Zakharov-Kuznetsov方程的对称、约化和精确解[J]. 聊城大学学报(自然科学版) 2017(04)
- [19].二阶非线性常微分方程组的精确解(英文)[J]. 黑龙江大学自然科学学报 2011(03)
- [20].不同装置下点源球体的近似解与精确解对比[J]. 中南大学学报(自然科学版) 2012(03)
- [21].(2+1)维extended Kadomtsev-Petviashvili方程的混合型精确解[J]. 南昌大学学报(理科版) 2019(02)
- [22].Mikhailov-Shabat-Sokolov方程的精确解[J]. 轻工学报 2018(01)
- [23].经典悬链线理论精确解与近似解的非线性数值计算[J]. 计算力学学报 2018(05)
- [24].KdV-Burgers-Kuramoto方程另一类指数函数求法及新的精确解[J]. 上海理工大学学报 2013(02)
- [25].一般格子方程新的无穷序列精确解[J]. 物理学报 2010(10)
- [26].一类非线性发展方程的精确解[J]. 潍坊学院学报 2008(06)
- [27].辅助函数法求解非线性偏微分方程精确解[J]. 计算机技术与发展 2017(11)
- [28].whitham-Broer-Kaup方程新的精确解[J]. 绵阳师范学院学报 2017(11)
- [29].仿样有限条U变换逼近法的精确解及其收敛性[J]. 应用数学和力学 2011(11)
- [30].关于Chaffee-Infante方程精确解的另一种求法[J]. 廊坊师范学院学报(自然科学版) 2009(03)