马晓洋:基于两种相关故障类型的预防性维修模型论文

马晓洋:基于两种相关故障类型的预防性维修模型论文

摘 要:研究了基于2种故障类型的单部件系统:一种故障模式为基于延迟时间理论的两阶段故障;另外一种为传统的0-1故障模式。该研究假设2种故障模式是存在相关性的,并用Copula函数来表示联合分布函数。为了检测2阶段故障模式下的缺陷状态,采用定期诊断策略;为了避免0-1故障模式下的故障发生,同时考虑预防性更换策略。分析了系统的更新过程,计算了期望长期单位时间成本(ELRCUT)。通过最优化成本函数,最终得到了最优的诊断周期和预防性更换间隔。最后给出了案例分析,证明了模型的有效性。

关 键 词:预防性更新;定期诊断;延迟时间;Copula函数

0 引言

诊断是避免关键机械设备失效的有效方法(可以检测到这些项目的状态),可以满足提高工厂安全性、生产率和降低维护成本的需求。通过诊断可以确定机械设备的状态,然后检查是否需要进行维护操作:如果设备处于良好的工作状态,则不需要维护操作;如果设备处于缺陷状态,则需进行预防性更换[1]。与故障更换相比,这可以节省大量成本。

在预防性维修模型中,延迟时间概念已被证明是判断诊断活动必要性的最有效方法之一[2]。延迟时间概念最初是由Christer[3]提出。它将机械设备的失败过程分为2个阶段:第一个阶段是从安装后全新状态到确定缺陷的点;第二个阶段是从这一点到失败点,称为“延迟时间阶段”。如果可以通过适当的诊断活动识别缺陷阶段,则可以在系统故障发生之前去除缺陷。基于延迟时间这一概念,学者们[4-5]已经进行了许多研究,并且与许多其他维护模型相比,也有很多成功应用的案例[2]。

上面提到的大多数论文都假设失效模式或阶段彼此独立。但实际情况并非如此。在本文中,我们提出了一种模型,其中设备受到了2种相关的故障模式的影响:延迟时间故障模式和传统的0-1故障模式,其中故障过程的联合分布采用Copula函数。Copula函数广泛用于表示相关部件的联合分布。使用Copula函数,Eryilmaz通过获得2个多态部件之间的联合状态概率定义了一个s-相关的维修模型,并且验证了当部件退化满足马尔科夫过程下的模型有效性[6]。Copula方法也用于计算相关连续k-out-of-n:G系统和相关性指标的可靠性[7]。

1 系统描述和符号表示

本研究考虑一个单部件系统,其故障可由2种不同但相关的故障模式导致。对应于两阶段延迟时间模型,故障模式1是指系统在正常状态下启动,在经历一段时间的缺陷状态之后最终导致故障。设定正常状态和缺陷状态的持续时间分别由随机变量X1和X2描述,其联合分布函数用Fi(·)(i=1,2)来表示,并假设X1和X2存在相关性。

对应于传统的0-1逻辑故障模型,故障模式2是指在故障状态发生之前只会经历正常状态。但是,故障模式1的状态将影响故障模式2,即当故障模式1下系统处于正常状态时,故障模式2的退化是稳定的,而系统在故障模式1的缺陷模式时,失效模式2会加速退化。设定故障模式2的随机故障时间由X3,相应的初始分布函数由F3(·)表示。X1和X3的联合分布函数用G(X1,X3),并且G(X1,X3)为Copula函数。如果2种故障模式中的任何一种发生了,则系统立即失效。

闻一多论学,确定典型时代和典型作者两个标准,唐诗便成为不二之选。他心中尚有一个中心观念,即先走清人的道路,“校正文字”“诠释词义”,所谓训诂明而后义理明。然而,“中国的文学浩如烟海,要在研究上有点成绩,必须学西洋人治学的方法,先挑一两个作家来研究,或选定一个时代来研究”[3]74。他早年是诗人,还写过“李白篇”,“从诗到诗是很近便的路”[10]。

大曲在存储过程中受存储条件的影响,会出现断面发暗、霉变、裂缝、脱壳以及理化指标波动等现象,还有可能对酿酒以及大曲自身质量带来影响,多数酒企都无相应标准对此进行科学管理和控制。现用曲(为方便阅读,以下将存储后的大曲称为现用曲)的感官表象与出房曲相比有较大不同,如:断面多数呈暗灰色、黑褐色,易出现裂缝、脱壳、霉变,虫害严重等。为了对这些表象进行科学评价,达到全面管控的目的,本文以江苏洋河酒厂的中高温大曲为对象,利用高通量测序技术对现用曲感官质量进行研究和评价。

此时,对应的概率密度函数为

Pr{(k-1)T<X1<kT,X1+X2>kT,X3>

本文所用的数学符号标识如下。

X1:故障模式1下正常状态的随机时间X2:故障模式1下缺陷状态的随机时间X3:故障模式2下正常工作时间t:当前时间点T:诊断周期n:最大诊断次数τ:故障模式1下的缺陷发生时间nT:预防性更换时间λi(t):Xi(i=1,2,3)不考虑其它影响下的初始故障率fi(·):Xi(i=1,2,3)不考虑其它影响下的初始概率密度函数g(x1,x3):X1和X3的联合分布概率密度函数G(x1,x3):X1和X3的联合分布函数θ:X1和X3的相关系数CI:单次诊断成本CR:预防性更新成本CF:故障更新成本

2 模型分析

2.1 更新过程模型

本文假定更新是唯一的维修活动,并且在更新后系统修复如新。系统在以下情况下可以进行更新:①在第k(k=1,2,...,n-1)次诊断中检测到故障模式1的缺陷状态;②在nT时进行预防性更换;③在((k-1)T,kT)(k=1,2,...,n)期间发生故障。在下文中,我们首先分析这3种情况并计算出它们相应的概率;然后,可以获得期望更新周期长度E(Tc)和期望成本E(Cc);最后,可得到关于T和n期望单位时间长期成本函数。这是一个EC(T,n)函数,并且有

(1)

2.2 更新过程概率分析

第一种情况的发生表明故障模式1在(k-1)T时刻仍然处于正常状态,故障模式2在kT之前没有发生。图1所示为预防性更新的时间点,其中Δ为预防性更新的时间点。因此,这种情况发生的概率为

每个更新周期内的期望更新周期长度为

该水源地作为城市的备用水源地,流域范围较大,位于城市建成区下游,降雨径流产生的面源污染对水源水质造成较为严重的威胁。针对以上问题,提出该水源地的近远期水质保障措施及水厂运行管理建议。

如上文所述,每当发生故障时,系统立即更新。假设系统在t∈((k-1)t,kT)时刻发生故障,则意味着以下2种可能的情况:1) 故障模式1在τ∈((k-1)T,t)时进入缺陷状态并且在时间t导致系统故障,而故障模式2在t时刻仍然处于正常状态,如图3(a)所示,其中,●为故障点;2) 故障模式2在时刻t发生系统故障,而此时故障模式1处于正常状态或缺陷状态,如图3(b)和图3(c)所示。

(2)

图1 基于故障模式1的缺陷状态更新

如果在前(n-1)次检查中没有检测到缺陷状态,且((n-1)T,nT)时间内未发生故障,则在nT时间点无论系统处于何种状态,都要进行预防性更新。这种情况表明故障模式1仍然在(n-1)T时间点内处于正常状态,且在nT之前2种故障模式下均未发生故障,如图2所示。这种情况的相应发生概率为

(4)课后知识的巩固:课后,运用“课程作业”功能布置适量作业来检查学生对知识点的掌握程度,并及时对作业进行批阅和汇总。

P(Tc=nT)=

(3)

图2 预防性更新

k=1,2,…,n-1

为了检测故障模式1下的可能缺陷状态,在系统运行期间采用定期诊断策略。 每当检测到故障模式1的缺陷状态时,立即对系统进行预防性更换。由于故障模式2没有缺陷状态,因此诊断对这种故障模式无效;然而,为了避免由于故障模式2导致的故障而可能造成的损失,考虑加入预防性更换策略,并假设如果故障模式1在n-1次诊断中处于正常状态并且在((n-1)T,nT)时间段内没有发生故障,则在nT(n≥1)进行预防性更换。同时假设,无论何时发生故障,都可以立即被检测到,并且可以立即更新系统。假设检查和更换所花费的时间可以忽略不计。假设单次诊断成本预防性更换成本分别为CI和CR。系统发生故障时的更新成本及其他损失用CF来表示。很显然,CF应满足CF>CR。

在((k-1)T,kT)时间内系统发生失效的概率为

螺虫乙酯分别按照2000倍和3000倍稀释液喷施2次和3次,距末次施药后7 d、14 d、21 d和28 d采样测定,螺虫乙酯在猕猴桃中的含量为 0.06~0.52 mg/kg。

(4)

(5)

图3 故障更新

从式(2)~(5),可以很容易地获得每次更新的期望成本为

(6)

P(Tc=kT)=

(7)

3 相关性分析

为了得到联合概率密度函数,首先讨论随机变量X1和X3的相关性。根据二维Sklar理论[8],Copula函数可用于组合变量的联合分布和边际分布。设F和G为联合分布函数H的边际分布,且

程瀚从“一把手”沦为“一霸手”,肆意妄为,大搞违法乱纪的人身依附圈,严重破坏了合肥公安的政治生态。一些不愿与其建立人身依附关系的干部被排挤打压;一些原本正直的干部为保住职位也不得不曲意逢迎、巴结讨好甚至送礼行贿;而一些投其所好的下属则进入程瀚的小圈子,成为“家臣、家丁”。程瀚落马后,200多名干部被约谈,交警支队支队长宋某某、公共交通分局(便衣侦查支队、视频侦查支队)政委杨某某等一批干部悉数落马。

U=F(x),V=G(y),则变量U,V在[0,1]区间内均匀分布[9]。可以证明存在一个Copula函数,对任意的x,y∈R,满足如下条件:

(8)

其中x=F-1(u),y=G-1(v)。

目前有很多双变量Copula函数。本文选择Frank Copula函数来描述X1和X3的相关性。假设U=F1(x1),V=F3(x3),则X1和X3的联合分布函数和联合概率密度安函数分别为

(9)

(10)

式中:c(·)为C(·)的概率密度函数;θ(θ≠0)为相关系数。那么X1和X3的联合概率密度函数可以表示为

g(x1,x3)=c(u,v,θ)f1(x1)f3(x3)

轮流座位制,归根究底只是座位排列的一种形式,是一种吃“流水席”式的排座方法。其实,座位的排列方式多种多样,随着国家对教育投入的不断加大,办学条件逐步改善,班级人数的逐渐规范,我们完全可以考虑其他的排座方式,如“分组模块式”排座就是当下流行的排座方式。

(11)

4 案例分析

在本文中,我们考虑一个单部件系统。假设X1、X2和X3的初始分布均满足最常见的Weibull分布其中各个随机变量的分布参数如表1所示。单次诊断成本、更新成本和故障成本分别设置为CI=10、CR=100和CF=800。相关系数设定为θ=2。

表1 单部件系统的寿命分布参数

iηiβi12001.521001.232502

将上述所设参数代入式(1),用MATLAB计算,可以得到最佳诊断周期和预防性更换策略为(T*,n*)=(35,3),表明如果系统没有发生故障,则应在第2个检查点进行预防性更换。 对应的期望更新周期长度和期望更新周期成本分别为E(Tc)=93.546 5和E(Cc)=197.586 4,最佳单位时间期望更新成本为EC(T*,n*)=2.504 4。

5 结束语

本文考虑了一个2种相关故障模式影响的单部件系统:两阶段延迟时间模式和传统的0-1逻辑模式。为了检测系统在延迟时间故障模式下的可能缺陷状态,需要对系统执行定期诊断,并且为减轻由0-1逻辑模式引起的故障还需要实施预防性更换策略。该模型的实际意义在于它允许我们集成这两种故障模式,即同时考虑延迟时间模式的缺陷状态如何影响0-1逻辑模式。本文采用Copula函数表示两种失效模式的联合分布。在此基础上构建了系统维护模型,研究了检查周期和预防性更换周期对系统性能的影响。为验证模型的有效性,选择Frank Copula函数作为联合分布函数。作为本研究的延伸,我们将考虑可调整的诊断周期和基于三阶段延迟时间理论的维修模型。

风影依然纹丝不动地站着,他知道师父所指的人是谁。她和风影一样,都是从梦里长大的孩子,都是孤单的,需要用爱去抚慰内心的寂寞与忧伤的。更何况,红琴现在受到了伤害,正在伤痛之中。这样的女孩原本就是裸露的,不是身体,而是灵魂。风影看着远方,一片浮云飘过来了,又飘过去了。他终于作别了师父,转身走了。

参考文献:

[1] Wang W.An inspection model for a process with two types of inspections and repairs[J].Reliability Engineering & System Safety,2009,94(2):526-533.

[2] Wang W.An inspection model based on a three-stage failure process[J].Reliability Engineering & System Safety,2011,96(7):838-848.

[3] Christer A H.A review of delay time analysis for modelling plant maintenance[M].Berlin:Springer,2002:89-123.

[4] Wang W.An overview of the recent advances in delay-time-based maintenance modelling[J].Reliability Engineering & System Safety, 2012,106(5),165-178.

[5] Wang W.Delay time modelling[M].Berlin:Springer,2008:345-370.

[6] Eryilmaz S.Modeling dependence between two multi-state components via copulas[J].IEEE Transactions on Reliability,2014,63(3):715-720.

[7] Jia X,Cui L,Yan J.A study on the reliability of consecutive k-out-of-n:G systems based on Copula[J].Communication in Statistics- Theory and Methods,2010,39(13):2455-2472.

[8] 王丽芳.Copula 分布估计算法[M].北京:机械工业出版社,2012:401.

[9] 苏良军.高等数理统计[M].北京:北京大学出版社,2007:70.

Apreventivemaintenancemodelbasedontwotypesofcorrelatedfailure

MA Xiaoyang1,FU Yuqiang2

(1.School of Information Management, Beijing Information Science & Technology University, Beijing 100192,China;2.School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract:This paper studies a single-unit system based on two types of failure: a two-stage delay-time failure and a traditional 0-1 logic failure. The two failure modes are assumed to be correlated, and a copula function is utilized to describe the joint distribution. Periodic inspections are used to detect the defective stage of the two-stage failure mode, while preventive replacement is used to avoid possible failure in the 0-1 logic mode. The renewal process of this system is analyzed and the expected long-run cost per unit time (ELRCUT) is derived. The optimal inspection period and preventive replacement interval that minimize ELRCUT are studied. Numerical examples are presented to illustrate the proposed model.

Keywords:preventive replacement;periodic inspection;delay-time;copula function

中图分类号: C 94

文献标志码:A

文章编号:1674-6864(2019)05-0025-04

DOI:10.16508/j.cnki.11-5866/n.2019.05.005

收稿日期:2019-05-27

基金项目:国家自然科学基金资助项目(71231001);北京信息科技大学学校校科研基金(1935013)

第一作者简介:马晓洋,女,博士,讲师。

标签:;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  

马晓洋:基于两种相关故障类型的预防性维修模型论文
下载Doc文档

猜你喜欢