基于EEMD和ARIMA的海温预测模型研究

基于EEMD和ARIMA的海温预测模型研究

论文摘要

类型丰富、时空分辨率高的海洋探测数据,为信号分解和机器学习算法的应用提供了可能。本文针对如何建立有效的海温预测模型这一问题,使用高时空分辨率的海表温度(SST)融合产品,引入信号处理领域的集合经验模态分解(EEMD)和机器学习领域的自回归积分滑动平均模型(ARIMA)。首先利用最适于分解自然信号的EEMD方法,将海温数据分解成多个确定频率的序列;再利用ARIMA分别对各个频率的序列进行预测,最后将各个序列的预测结果进行组合。该方法在丰富数据的支撑下,比以往直接使用海温数据所建立的预测模型精度更高,为更好地进行海温预测提供了新方法。

论文目录

  • 0 引言
  • 1 数据来源
  • 2 信号分解 (EEMD)
  •   2.1 方法概述
  •   2.2 处理结果
  • 3 机器学习 (ARIMA)
  •   3.1 方法概述
  •   3.2 处理结果
  • 4 结论
  • 文章来源

    类型: 期刊论文

    作者: 张莹,谭艳春,彭发定,廖杏杰,余昱昕

    关键词: 集合经验模态分解,机器学习,自回归积分滑动平均模型,海表温度

    来源: 海洋学研究 2019年01期

    年度: 2019

    分类: 基础科学

    专业: 海洋学

    单位: 广东海洋大学数学与计算机学院,广东海洋大学电子与信息工程学院

    基金: 广东省普通高校重点科研项目“创新强校工程”资助(2018KTSCX091),广东省大学生创新创业训练计划项目资助(CXXL2019082),“海之帆”起航计划科技发明制作类项目资助(qhjhkj201806)

    分类号: P731.31

    页码: 9-14

    总页数: 6

    文件大小: 949K

    下载量: 549

    相关论文文献

    • [1].基于ARIMA模型的卫星钟差异常值探测的模型选择方法[J]. 武汉大学学报(信息科学版) 2020(02)
    • [2].基于ARIMA模型的西安市空气质量指数的分析与预测[J]. 电脑知识与技术 2019(35)
    • [3].基于ARIMA模型对四川省医疗机构卫生资源需求预测分析[J]. 预防医学情报杂志 2020(02)
    • [4].应用ARIMA模型预测石家庄市手足口病发病趋势[J]. 中国卫生统计 2020(01)
    • [5].Forecasting Method of Stock Market Volatility in Time Series Data Based on Mixed Model of ARIMA and XGBoost[J]. 中国通信 2020(03)
    • [6].ARIMA乘积季节模型在青州市布鲁氏菌病发病预测中的应用[J]. 中国医院统计 2020(02)
    • [7].基于ARIMA的入境旅游月度过夜人次预测[J]. 微型电脑应用 2020(04)
    • [8].ARIMA模型在江西省布鲁氏菌病发病数预测中的应用[J]. 中国人兽共患病学报 2020(03)
    • [9].ARIMA模型在德国小蠊密度季节消长预测中应用及抗药性[J]. 中国公共卫生 2020(03)
    • [10].Short-term Prediction of Ionospheric TEC Based on ARIMA Model[J]. Journal of Geodesy and Geoinformation Science 2019(01)
    • [11].Analysis of temporal trends of human brucellosis between 2013 and 2018 in Yazd Province, Iran to predict future trends in incidence: A time-series study using ARIMA model[J]. Asian Pacific Journal of Tropical Medicine 2020(06)
    • [12].ARIMA模型在台山地区手足口病疫情的预测作用[J]. 齐齐哈尔医学院学报 2020(07)
    • [13].我国出境旅游人次的预测与分析——基于ARIMA模型[J]. 科技经济导刊 2020(20)
    • [14].基于ARIMA乘积季节模型的某医院介入导管室手术量预测研究[J]. 中国现代手术学杂志 2020(03)
    • [15].基于ARIMA模型的轴向柱塞泵回油量预测研究[J]. 内燃机与配件 2020(21)
    • [16].基于ARIMA乘积季节模型预测医院感染患病率趋势和季节性[J]. 安徽预防医学杂志 2020(05)
    • [17].一种基于ARIMA-SVR混合方法的汇率预测模型[J]. 智库时代 2019(01)
    • [18].季节ARIMA模型在保费总收入预测中的应用[J]. 福建金融管理干部学院学报 2018(04)
    • [19].基于ARIMA模型的游客人数分析与预测[J]. 电脑与电信 2019(Z1)
    • [20].基于南昌市新建区居民伤害死亡趋势的ARIMA模型构建与预测[J]. 南昌大学学报(医学版) 2019(01)
    • [21].基于ARIMA模型的图书馆微信公众号用户量预测[J]. 中国科技信息 2019(13)
    • [22].基于ARIMA预测模型的人才市场需求分析[J]. 商讯 2019(11)
    • [23].ARIMA模型在血液供应量预测分析中的应用[J]. 电脑知识与技术 2019(22)
    • [24].基于ARIMA模型的郑州市玉米收购价分析及预测[J]. 现代商业 2019(28)
    • [25].基于ARIMA模型的新疆阿克苏地区棉花价格分析与预警[J]. 农村经济与科技 2019(19)
    • [26].基于ARIMA模型对网络舆情传播过程研究[J]. 广西质量监督导报 2019(11)
    • [27].基于ARIMA-BPNN的组合模型在重庆市艾滋病发现人数预测中的应用[J]. 预防医学情报杂志 2018(03)
    • [28].应用ARIMA模型预测某三级甲等医院门诊量[J]. 中国医院统计 2018(01)
    • [29].基于ARIMA的价格时间序列分析与预测——以沪铝1803合约为例[J]. 经贸实践 2018(10)
    • [30].ARIMA模型在肺结核登记病例数预测中的应用[J]. 江苏预防医学 2018(03)

    标签:;  ;  ;  ;  

    基于EEMD和ARIMA的海温预测模型研究
    下载Doc文档

    猜你喜欢