论文摘要
针对当前聚类方法(例如经典的GN算法)计算复杂度过高、难以适用于大规模图的聚类问题,本文首先对大规模图的采样算法展开研究,提出了能够有效保持原始图聚类结构的图采样算法(Clustering-structure Representative Sampling,CRS),它能在采样图中产生高质量的聚类代表点,并根据相应的扩张准则进行采样扩张.此采样算法能够很好地保持原始图的内在聚类结构.其次,提出快速的整体样本聚类推断(Population Clustering Inference,PCI)算法,它利用采样子图的聚类标签对整体图的聚类结构进行推断.实验结果表明本文算法对大规模图数据具有较高的聚类质量和处理效率,能够很好地完成大规模图的聚类任务.
论文目录
文章来源
类型: 期刊论文
作者: 张建朋,陈鸿昶,王凯,祝凯捷,王亚文
关键词: 大规模图,图采样,图聚类,整体推断,聚类代表点,扩张准则
来源: 电子学报 2019年08期
年度: 2019
分类: 信息科技,基础科学
专业: 数学,计算机软件及计算机应用
单位: 国家数字交换系统工程技术研究中心,荷兰埃因霍温理工大学计算机系
基金: 国家自然科学基金群体项目(No.61521003),国家重点研发计划项目(No.2016YFB0800101)
分类号: TP311.13;O157.5
页码: 1731-1737
总页数: 7
文件大小: 1001K
下载量: 167
相关论文文献
- [1].一种基于群体智慧的智能服务聚类方法[J]. 郑州大学学报(理学版) 2019(04)
- [2].几种典型聚类方法在雷达信号分选中的应用浅析[J]. 电子信息对抗技术 2017(05)
- [3].面向聚类集成的基聚类三支筛选方法[J]. 计算机应用 2019(11)
- [4].一种基于投票的三支决策聚类集成方法[J]. 小型微型计算机系统 2016(08)
- [5].双向聚类方法综述[J]. 数理统计与管理 2020(01)
- [6].基于云计算的数据挖掘聚类算法研究[J]. 数字通信世界 2020(05)
- [7].针对气味数据的交互式聚类可视分析框架[J]. 计算机辅助设计与图形学学报 2020(07)
- [8].基于动态邻域的三支聚类分析[J]. 计算机科学 2018(01)
- [9].考虑重要性赋权的分部多关系聚类方法[J]. 小型微型计算机系统 2017(06)
- [10].一种加权网络聚类运算中权与相似度转换方法[J]. 电子质量 2016(09)
- [11].一种基于遗传算法的聚类集成方法[J]. 计算机工程与应用 2013(08)
- [12].一种基于命名实体的搜索结果聚类算法[J]. 计算机工程 2009(07)
- [13].基于添加人工数据的高差异性聚类集体生成方法[J]. 模式识别与人工智能 2008(05)
- [14].基于自步学习的鲁棒多样性多视角聚类[J]. 中国图象图形学报 2019(08)
- [15].基于K-Means的搜索结果聚类方法[J]. 工业控制计算机 2018(03)
- [16].基于真实核心点的密度聚类方法[J]. 计算机应用研究 2018(12)
- [17].基于双向聚类的客户细分方法研究[J]. 工业控制计算机 2017(09)
- [18].基于层次分析法的加权聚类融合[J]. 内江师范学院学报 2013(04)
- [19].选择性聚类融合研究进展[J]. 计算机工程与应用 2012(10)
- [20].一种面向加权双向图的聚类发掘方法[J]. 小型微型计算机系统 2012(07)
- [21].信息熵加权的协同聚类算法的改进与优化[J]. 宁夏师范学院学报 2020(01)
- [22].用于协同感知的分布式聚类方法研究[J]. 空天防御 2020(03)
- [23].一种多粒度增量属性的聚类方法[J]. 小型微型计算机系统 2019(03)
- [24].聚类算法综述[J]. 计算机应用 2019(07)
- [25].基于聚类准则融合的加权聚类集成算法[J]. 山西大学学报(自然科学版) 2018(02)
- [26].基于需求功能语义的服务聚类方法[J]. 计算机学报 2018(06)
- [27].轨迹聚类算法及其应用[J]. 电脑知识与技术 2018(29)
- [28].基于随机聚类方法建模的序列分析[J]. 江西师范大学学报(自然科学版) 2017(05)
- [29].一种选择性加权聚类融合算法[J]. 计算机工程与应用 2012(22)
- [30].聚类集成方法研究[J]. 计算机科学 2011(02)