考虑需求响应的温度敏感用户夏季短期负荷预测方法

考虑需求响应的温度敏感用户夏季短期负荷预测方法

论文摘要

在新常态下为了降低生产成本,用户会参与需求响应进行错峰和避峰。传统负荷预测模型对用户负荷特性变化不敏感,对一些突变信息难以准确预测。针对此问题,考虑温度敏感用户参与需求响应,提出了夏季短期负荷预测方法。该方法采用小波变换和局部离群因子方法对负荷数据预处理,基于模糊C均值聚类和径向基函数网络相结合的方法识别预测日的负荷特性,采用线性回归模型对预测日的负荷特性相同的历史负荷数据进行负荷预测,根据降温负荷的基准值和温度变化值评估出降温负荷值,最后综合得出预测日的负荷。对3类温度敏感的纺织行业大用户进行算例分析,验证了所提方法的可行性和有效性。

论文目录

  • 1 考虑负荷特性差异的负荷预测方法
  •   1.1 基于小波变换和局部离群因子的数据预处理
  •   1.2 基于RBF的日负荷特性识别
  •   1.3 基于负荷趋势和降温负荷修正的负荷预测模型
  • 2 算例分析
  •   2.1 算例1负荷预测
  •   2.2 算例2负荷预测
  •   2.3 算例3负荷预测
  • 3结语
  • 文章来源

    类型: 期刊论文

    作者: 周兴华,耿俊成,杜松怀,张永浩,仇向东,吴博

    关键词: 负荷预测,负荷特性,负荷趋势,降温负荷

    来源: 电网与清洁能源 2019年04期

    年度: 2019

    分类: 工程科技Ⅱ辑

    专业: 电力工业

    单位: 北京中恒博瑞数字电力科技有限公司,国网河南省电力公司电力科学研究院,中国农业大学信息与电气工程学院

    基金: 国家重点研发计划项目课题(2016YFB0900101),国家电网公司总部科技项目(SC-2016-015)~~

    分类号: TM715

    页码: 16-22

    总页数: 7

    文件大小: 1549K

    下载量: 91

    相关论文文献

    • [1].基于混沌类电磁算法优化支持向量机的短期负荷预测[J]. 计算技术与自动化 2019(04)
    • [2].做好短期负荷预测 保证电网安全经济运行[J]. 农村电工 2020(05)
    • [3].基于参数迁移的节假日短期负荷预测方法[J]. 电气自动化 2020(04)
    • [4].并行多模型融合的混合神经网络超短期负荷预测[J]. 电力建设 2020(10)
    • [5].应对海量数据的超短期负荷预测在实时电力市场的应用研究[J]. 电力大数据 2019(12)
    • [6].动态相似与静态相似相结合的短期负荷预测方法[J]. 电力系统保护与控制 2018(15)
    • [7].基于参数优化的超短期负荷预测调整策略[J]. 电子测试 2016(23)
    • [8].基于朴素贝叶斯和支持向量机的短期负荷预测[J]. 电力安全技术 2016(12)
    • [9].基于气象信息因素修正的灰色短期负荷预测研究[J]. 自动化应用 2016(12)
    • [10].基于支持向量机方法的短期负荷预测研究[J]. 自动化应用 2016(12)
    • [11].分类管理方法在短期负荷预测工作中的应用[J]. 农村电工 2017(04)
    • [12].基于分形特性修正气象相似日的节假日短期负荷预测方法[J]. 电网技术 2017(06)
    • [13].基于改进人体舒适指数的微电网超短期负荷预测[J]. 广东电力 2017(04)
    • [14].有功运行模式下的无功短期负荷预测[J]. 电子技术与软件工程 2016(06)
    • [15].实时电价条件下的短期负荷预测研究[J]. 自动化与仪器仪表 2016(05)
    • [16].电力系统超短期负荷预测方法及应用[J]. 硅谷 2014(20)
    • [17].基于云计算的扩展短期负荷预测方法的研究[J]. 科技视界 2014(36)
    • [18].电业超短期负荷预测仿真研究[J]. 计算机仿真 2015(07)
    • [19].基于时间序列法超短期负荷预测改进方法的研究[J]. 辽宁工业大学学报(自然科学版) 2015(05)
    • [20].智能组合模型在短期负荷预测中的应用[J]. 电子技术 2020(07)
    • [21].开放售电环境下用户短期负荷预测方法[J]. 电工电能新技术 2020(01)
    • [22].基于多负荷模式和分时段的河源电网短期负荷预测[J]. 自动化应用 2020(01)
    • [23].基于云计算的智能电网短期负荷预测[J]. 电世界 2019(11)
    • [24].县域电网负荷特性分析与短期负荷预测研究[J]. 华北电力技术 2017(05)
    • [25].深度神经网络在电网短期负荷预测中的应用[J]. 中国科技信息 2017(12)
    • [26].采用稳健回声状态网络的超短期负荷预测方法[J]. 计算机工程与应用 2016(04)
    • [27].县级电网短期负荷预测管理的若干措施[J]. 企业改革与管理 2015(22)
    • [28].论对于短期负荷预测的方法及其应用[J]. 电子技术与软件工程 2014(19)
    • [29].如何提高短期负荷预测精度的探讨[J]. 佛山科学技术学院学报(自然科学版) 2012(05)
    • [30].考虑人体舒适度的扩展短期负荷预测新方法[J]. 电力系统及其自动化学报 2011(03)

    标签:;  ;  ;  ;  

    考虑需求响应的温度敏感用户夏季短期负荷预测方法
    下载Doc文档

    猜你喜欢