导读:本文包含了氨基甲酸酯杀虫剂论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:氨基甲酸酯,杀虫剂,色谱,液相,大洋洲,乙酰胆碱,环保署。
氨基甲酸酯杀虫剂论文文献综述
刘刚[1](2019)在《15种氨基甲酸酯类杀虫剂在我国的登记作物范围》一文中研究指出氨基甲酸酯类杀虫剂是20世纪50年代,继有机氯和有机磷之后发展起来的一类农药,因化学结构归属于氨基甲酸酯而得名。其多数品种持效期较短,选择性强,以防治蚜虫、飞虱等刺吸类害虫和蚊、蝇、蚂蚁、蜚蠊等卫生害虫为主,对螨类、蚧类无效。灭多威、茚虫威等部分品种可防治棉铃虫、烟青虫、甜菜夜蛾、小菜蛾、潜叶蛾等鳞翅目害虫。涕灭威、克百威等少数品种持效期较长,对地下害虫、线虫防效较好。甲奈威等少数品种可防治蜗牛等软体动物。(本文来源于《农药市场信息》期刊2019年21期)
刘洁,鹿文慧,崔荣,孙西艳,李金花[2](2018)在《固相萃取-毛细管液相色谱测定食品和水样中有机磷和氨基甲酸酯类杀虫剂残留》一文中研究指出采用乙腈提取、固相萃取(SPE)富集浓缩技术结合自行研制开发的毛细管液相色谱(CLC)仪,同时分离测定了食品和水样中1种有机磷和3种氨基甲酸酯类杀虫剂残留。对影响SPE效率和CLC分离检测的各类因素进行了优化,包括固相萃取柱种类、样品pH、洗脱剂种类和体积、上样速率、盐效应、上样体积、检测波长、流动相种类和比例等。结果表明,4种杀虫剂在6 min内达到完全分离,检出限为0.35~1.20μg/kg,定量限为1.17~4.00μg/kg。使用该SPE-CLC法对西红柿、黄瓜、苹果样品和自来水、湖水水样进行加标回收测定,得到食品中加标回收率为72.41%~107.15%,相对标准偏差≤8.12%;水样中加标回收率为71.45%~109.25%,相对标准偏差≤9.28%。该法能够满足农药多残留分析要求。(本文来源于《色谱》期刊2018年01期)
陈阳,姜兆林,李栋[3](2017)在《血中氨基甲酸酯类杀虫剂固相萃取检测》一文中研究指出目的通过计算机模拟选择适合目标分子的功能单体,利用选好的功能单体制成固相萃取柱来检测血中氨基甲酸酯类杀虫剂。方法利用量子化学计算理论选出最优的功能单体,制柱,并检测血样。结果制成回收率达到86.3%的萃取柱。结论利用量子化学计算理论进行的计算机模拟,能够对实验条件进行一定程度的优化,减少实验操作并且节约试剂。(本文来源于《广东化工》期刊2017年16期)
芮银[4](2017)在《SBA-15介孔分子筛固定化乙酰胆碱酯酶及其对有机磷和氨基甲酸酯类农药杀虫剂含量的测定》一文中研究指出杀虫剂具有良好的杀虫效果,被广泛应用于现代农业生产当中,其残留通过食品传导到人体,严重影响了人类的健康。因此,开发一种快速、稳定的农残检测技术对于环境、食品安全等方面有着重大的意义。根据氨基甲酸酯和有机磷类农药对乙酰胆碱酯酶(AChE)活性具有抑制作用这一特性,可以利用AChE快速、灵敏地检测这两类农药残留。本文主要研究了利用SBA-15和氨基修饰的SBA-15介孔分子筛固定化AChE的最佳方法和条件,测定了固定化AChE稳定性,并对固定化AChE检测西维因和敌百虫两种农药的含量进行了初步的研究。首先,以嵌段共聚物PEO_(20)-PPO_(70)-PEO_(20)(P123)为模板剂,TEOS为硅源采用水热合成法在酸性条件下合成介孔分子筛SBA-15,并以APTES作为功能化试剂,通过后嫁接法成功制备氨基修饰的SBA-15(即NH_2-SBA-15)。通过XRD、N_2吸附-脱附、红外、热重分析,证明了合成的物质为SBA-15和NH_2-SBA-15介孔分子筛。SBA-15和NH_2-SBA-15的孔径分别为12.5 nm和10.2 nm。通过TG-DSC的结果计算出NH_2-SBA-15中氨基的修饰量约为2.76 mmol/g。其次,分别以SBA-15和NH_2-SBA-15为载体,对固定化条件进行了优化。结果显示在20℃下、0.1 M pH 8.0的PBS缓冲液中分别加入1 mg/mL AChE、10 mg/mL载体、1.5 mM的戊二醛和0.4%BSA,固定化30 min为最佳的固定化条件;同时比较了SBA-15(6.1 nm)、SBA-15(12.5 nm)、NH_2-SBA-15(10.2 nm)叁种载体的固定化情况,NH_2-SBA-15具有最高的固定化效率,几乎所有的酶都固定到了载体上,且没有酶的泄露。以NH_2-SBA-15为载体,研究了不同的固定化方式对固定化酶热稳定性的影响,结果表明,NH_2-SBA-15吸附-交联法得到的固定化酶AChE-NH_2-SBA-15具有最高的热稳定性。在4℃和25℃下分别储藏60天后仍保留了94.5%和82.8%的酶活。循环使用6次后,剩余55.0%的酶活性。最后,利用固定化酶AChE-NH_2-SBA-15检测了农药西维因和敌百虫,两种农药的线性范围分别是1.0×10~(-3)-10.0 ppm和1.0×10~(-5)-1.0 ppm,且R~2均大于0.98,检出限分别是1.2×10~(-3) ppm和7.0×10~(-5) ppm,较游离酶具有更宽的线性域和更低的检出限。西维因和敌百虫的检测回收率分别为94%和103%,RSD均小于5%。(本文来源于《上海应用技术大学》期刊2017-05-25)
黄会,刘慧慧,王共明,韩典峰,张华威[5](2016)在《氨基甲酸酯类杀虫剂的毒性、检测方法及其在水环境中残留研究进展》一文中研究指出氨基甲酸酯类杀虫剂自开发以来得到广泛应用,近年来氨基甲酸酯类杀虫剂在养殖环境中污染已经引起广泛重视。本文对氨基甲酸酯类杀虫剂毒性、检测方法以及水环境中污染状况等研究进行综述。目前,对氨基甲酸酯类杀虫剂的研究主要集中在毒性、检测方法,污染状况分析,其中残留检测多存在于植物及淡水环境中。因此,急需加强养殖水环境中氨基甲酸酯类杀虫剂污染状况调查研究,为水环境中氨基甲酸酯类杀虫剂检测方法的开发及限量标准的制定打下基础。(本文来源于《中国渔业质量与标准》期刊2016年04期)
[6](2016)在《新西兰有机磷和氨基甲酸酯(OPC)类杀虫剂新标签标准将于7月起生效》一文中研究指出新西兰环保署近日提醒生产商和进口商,2016年7月1日起,新的有机磷和氨基甲酸酯(OPC)类杀虫剂标签标准将生效。2015年,新西兰修订了15种OPC成分的登记,包括乙酰甲胺磷、乐果、甲胺磷、灭多威和杀线威等。新西兰环保署有害物质及新生物部门执行总监Ray McM illan介绍说,"环保署(本文来源于《农药市场信息》期刊2016年16期)
Manish,Raj,Pandey[7](2013)在《利用牙鲆鳃细胞FG和斑马鱼胚胎对氨基甲酸酯类杀虫剂残杀威和西维因的细胞毒性、遗传毒性和致畸性的毒性评估研究》一文中研究指出Two carbamate insecticides, propoxur and carbaryl, having a wide spectrum ofapplications, have intensified the risk of exposure to non-target organisms due totheir indiscriminate use. Propoxur (2-isopro poxy phenyl methylcarbamate) is usedthroughout the world as insecticides, herbicides, nematocides, acaricides, fungicides,rodenticides, avicides, and bird repellents with their application in a wide variety ofhabitats including agricultural lands, forests, rangelands, wetlands, residential areas,and commercial sites. Carbaryl (1-naphthyl-N-methylcarbamate), the most frequentlyused insecticide in the carbamate chemical family, is widely used for the control of avariety of pests on fruits, vegetables, cereals, forage, cotton, forests, lawns,ornamentals and many other crops as well as poultry, livestock and pets. The toxicmode of action of carbamate insecticides for animals is the inhibition of the enzymeacetylcholinesterase (AChE) at synaptic junctions in the nervous system, resulting inthe accumulation of acetylcholine in the nerve synapses, causing uncontrolledmovement, paralysis, convulsions, tetany, and possible death. In addition, bothinsecticides have also been shown to be toxic to non-target species like honeybees,amphibians, birds, fishes and even mammals including humans, though their toxicityvaries according to the species.Toxicity of pesticides on non-target organisms and ecosystems is of worldwideconcern. The widespread applications of these carbamates have attracted increasingconcerns on the safety of aquatic organisms as this pesticide eventually ends up intothe aquatic environment. Fish are an important population of the aquatic ecosystemsand often used for monitoring toxicity in the aquatic environments. Accumulatingevidences showed that propoxur is moderately to slightly toxic to freshwater fishwhereas carbaryl can range from highly to slightly toxic to freshwater fish on anacute basis and is moderately toxic to ocean and estuary fish.The main purpose of the present study was to examine the toxic effects of bothcarbamate insecticides propoxur and carbaryl in the in vitro cultured FG cells and zebrafish embryos with a view to record their cytotoxicity, genotoxicity andteratogenicity. In specific, in vitro studies were performed using FG cell line todetermine the cytotoxic effects of both insecticides by MTT reduction, neutral reduptake (NRU), lactate dehydrogenase (LDH) release, and Hoechst33342andpropidium iodide (PI) double staining assays; genotoxic effects was evaluated bycomet assay. The embryotoxicity test dealt with the assessment of these carbamatesin developing zebrafish embryos by observing diverse general morphologicalendpoints. This work has been focused on various aspects of toxicity measurementsof both insecticides to FG cells and zebrafish embryos, which may provideinformation relevant to other carbamate insecticides.Both propoxur and carbaryl treatments were seen to inhibit the proliferation ofFG cells in a dose-dependent manner, indicating a decrease in the viability of FG cellswith an increase in insecticides concentrations. The MTT, NRU and LDH releaseassays results demonstrated that both compounds exerted acute cytotoxic effects onFG cells, showing24h-IC50values of89.96土1.04lig/ml,103.4土1.14μg/ml and86.59土1.13lig/ml, respectively for propoxur, whereas53.48土1.21lig/ml,59.13土1.19μg/ml and46.21土1.24lig/ml, respectively for carbaryl. The results showed thatLDH leakage and MTT assay were more sensitive than NRU assay in the cytotoxicitydetection of exposed FG cells to both insecticides. The different mechanisms oftoxicity detection for these assays and the toxic mechanism of action of insecticidesin FG cells may account for the different sensitivity. LDH leakage assay detected thereleased LDH enzymes from the dead cells upon loss of their membrane integrity bytoxicants. However, MTT assay determined the perturbation of the mitochondrialfunction of live cells caused by toxicants, whereas NRU assay detected the loss oflysosomal activity of live cells. But the NR accrual and retention were also dependenton intact plasma membrane and adequate energy metabolism in addition to afunctional lysosome. Thus, the interruption of mitochondrial function and injury ofmembrane integrity by both insecticides may to some degree resulted in a relativelylower sensitivity of NRU assay.Taken together, both propoxur and carbaryl imposed acute cytotoxicity on FGcells, and the order of sensitivity for these three assays, based on their24h-IC50values obtained, was LDH> MTT> NRU. In addition, the obtained cytotoxicity by bothinsecticides in FG cells was closely correlated in all these assays, independent of thecytotoxic endpoints employed.The data by LDH release assay were further confirmed by examining themorphological changes of the exposed FG cells. Obvious morphological changes wereobserved in the FG cells after exposed to100lag/ml and above for propoxur, whereas25μg/ml and above for carbaryl after24h. The data revealed that the release of LDHhad happened before observable morphological changes occurred in exposed FGcells to propoxur but it happened simultaneously with the obvious morphologicalchanges for carbaryl. With further increase of the concentration of these compounds,the treated cells started to shrink and distort into irregular shape, and eventuallydetached from the substrate surface and lysed.Based on the observations of the morphology of FG cells and intensity of blueand red fluorescence of the nuclei of FG cells as determined by Hoechst33342andpropidium iodide (PI) double staining assay, the toxicity of both insecticides was seenmanifested in terms of necrosis and in a dose-dependent way rather than apoptosissince apoptotic cells were noticed sparsely. Significant cell damages were observedafter24h exposure at the concentration of>100μg/ml for propoxur and>10μg/mlfor carbaryl (p<0.05).DNA fragmentation assay revealed that there was no effect of these insecticideson the DNA integrity of FG cells as no obvious DNA laddering was induced by bothinsecticides tested in the FG cells.Further, the results obtained in the genotoxicity evaluation of both insecticidesby comet assay showed that propoxur can induce weak DNA damage in exposed FGcells in a dose-dependent manner at levels from10-75μg/ml of propoxur, however,it was found non-significant up to20μg/ml concentration of carbaryl. The DNA damage scores and the results of propoxur demonstrated that the damage gradeswere not significantly different from the control (p>0.05) up to50μg/ml and a littledose-effect relationship was evident. Though not statistically significant up to50l-ig/ml propoxur, the cells were affected the most at a concentration of75lag/ml. Butthe damage grades were not significantly different from the control (p>0.05) at allthe tested concentrations of carbaryl, though a little dose-effect relationship wasevident.The results of genotoxic response for the time-dependent exposure to50μg/mlpropoxur, based on the concentration that produced similar cytotoxicity, from3-96hin FG cells demonstrated that the DNA damage increased with the increase of theexposure periods to propoxur up to certain level. Significant DNA damage was seenfrom24-96h of exposure as compared with the control (p<0.05). But carbaryldemonstrated no statistically significant genotoxic effects at all the testedconcentrations and time of exposure (p>0.05).In addition, the concentration responsive endpoints analyzed in all the tests inFG cells indicated that the significant toxic effects at all the concentrations testedwere observed from75μg/ml for propoxur and10μg/ml for carbaryl (p<0.05)except the effects of carbaryl on the membrane integrity and genotoxic response ofFG cells.Finally, teratogenicity assay has been carried out to evaluate the teratogenicity ofpropoxur and carbaryl based on the zebrafish embryotoxicity test. The resultsobtained from this assay by determining the developmental effects and endpointsassociated to both insecticides exposure showed that the developing zebrafishembryos were more sensitive to carbaryl than propoxur. The egg/embryo mortalitydata demonstrated elevated mortality rates in both dose-and time-dependentmanner by propoxur with the lowest observed effect concentration (LOEC) of100l-ig/ml (p<0.05) and24h-,48h-and96h-LC50values of166.4土1.06lig/ml,146.3土1.07μg/ml and134.8土1.06lig/ml, respectively. But in case of carbaryl, the early mortality of embryos were first observed at8and12hours post fertilization (hpf)with LC50values of80.01土2.5μg/ml and62.08土1.05lig/ml, respectively. Moreover,the LOEC of carbaryl was10μg/ml (p<0.05) with24h-,48h-and96h-LC50values of41.80土1.10lig/ml,17.80土1.04μg/ml and14.46土1.05lig/ml, respectively.Malformations of the exposed embryos were found after12and8hpf forpropoxur and carbaryl, respectively in comparison to control. The earliest developingprocesses were observed disrupted at100and200μg/ml of propoxur exposureconcentrations causing slowdown of epiboly after12hpf. But slowdown of epibolywas observed significantly only at8and12hpf for40and80μg/ml of carbarylconcentrations (p<0.05). Further, the delayed or unfinished epiboly at8and12hpflater resulted in either malformation or mortality of exposed embryos to bothinsecticides.Yolk sac edema was conspicuous and statistically significant at theconcentrations of100and200μg/ml propoxur at24,48and96hpf but pericardialsac edema was found significant at48and96hpf (p<0.05). The significantpercentage effects on yolk and pericardial sac were observed at24hpf for10,20and40μg/ml carbaryl, however these effects were observed only at10and20μg/mlcarbaryl at48and96hpf. Moreover, total body length was markedly affected bycarbaryl at an exposure level of>10lig/ml, causing significant reduction in bodylength at96hpf (p<0.05). Tail flexure was also observed at96hpf and foundsignificantly affected at10and20μg/ml carbaryl. In addition, carbaryl affected bothtotal body length and tail flexure of all survived embryos at the concentration of20Effects of different concentrations of both insecticides on spontaneousmovement of embryos showed that the frequency of movement decreased withincreasing concentrations. Resulting effects were discrete and the distribution wasnot symmetric over the mean. Kolmogorov-Smirnov (KS) test showed that there wasno uniform distribution between the spontaneous movements among all tested concentration groups (p<0.05).Significant decline in heart rates were observed at propoxur concentrations of100and200μg/ml in comparison to control at48,72and96hpf (p<0.05). However,the heart rates were decreased at48and72hpf at carbaryl concentrations of10and20μg/ml but significantly declined at all the tested concentrations from1lag/ml andabove at96hpf. Moreover, it was noted that the heart rates of exposed embryosshowing yolk sac edema and pericardial edema were feeble and irregular andreduced to the lowest beats for both compounds.The statistically significant effects on hatching at72hpf were observed at200l-ig/ml propoxur but these effects were observed at100and200μg/ml propoxur at96hpf. However, embryos exposed to10and20lag/ml carbaryl at96hpf were foundsignificantly affected on their hatching when compared with the control (p<0.05).But the toxicity effects increased with the increasing concentrations and in adose-dependent manner. The median hatching time (HT50) of zebrafish embryos onexposure to both insecticides were calculated from the cumulative hatching rates.Significant differences between the control and exposed groups were observed onlyat100μg/ml of propoxur concentration (HT50=59.19土1.02) and at10μg/ml ofcarbaryl concentration (HT50=60.93土1.05)(p <0.05).In addition, the time and concentration responsive endpoints analyzed in all thetests in zebrafish embryos demonstrated that the significant toxic effects wereobserved at100and200μg/ml of propoxur except the effect on cumulative hatchingrate at72hpf, in which it was found significant only at the concentration of200l-ig/ml (p<0.05). But in case of embryos exposed to carbaryl, the significant toxiceffects were observed from10μg/ml (p<0.05) except the effect of slowdown ofepiboly at8and12hpf, in which it was found significant only at the concentration of40μg/ml along with the effect on heart rate at96hpf showing significant only at1l-ig/ml carbaryl.Both insecticides demonstrated no abnormality in other developmental endpoints, such as tail detachment, otolith formation, somite formation, eyedevelopment and body pigmentation in the treated embryos.In summary, the current study demonstrated that the exposure of FG cells topropoxur and carbaryl for24h could induce acute cytotoxic effects in adose-dependent manner but weak and non-significant genotoxic effects for propoxurand carbaryl, respectively. FG cells also reacted differently to the differentcytotoxicity assays, confirming the suitability of this cell line in the screening ofcytotoxic and genotoxic effects of this type of pesticide. Using zebrafish embryo as amodel, the present research also provided more information on the toxic effects ofboth carbamates on the early embryo development of fish. The embryos exposed toboth insecticides exhibited a series of toxic effects, including mortality, slowdown ofepiboly, decreased spontaneous movement, yolk and pericardial sac edemas,lowering of heart rates and delayed hatching rates along with additional reducedbody length and tail flexure in case of carbaryl exposure. Thus investigation of thecytotoxicity, genotoxicity, and teratogenicity of propoxur and carbaryl using FG cellsand zebrafish embryos will markedly contribute to the safety assessment of theseinsecticides for aquatic organisms.(本文来源于《中国海洋大学》期刊2013-06-02)
姜兆林,段梦圆,金倩辉,谷伟恩[8](2012)在《四种氨基甲酸酯类杀虫剂分子印迹聚合物的合成及识别性能研究》一文中研究指出以呋喃丹为模板分子,合成呋喃丹分子印迹聚合物,考察对呋喃丹、西维因、叶蝉散、速灭威的选择性,结果表明合成的分子印迹整体柱对呋喃丹、西维因、叶蝉散、速灭威均具有很好的选择性。可以利用结构上的相似性进行同类别物的一次性选择提取分离。(本文来源于《中国刑警学院学报》期刊2012年04期)
邓龙,郭新东,何强,杨群华,沈玉栋[9](2012)在《高效液相色谱-串联质谱法测定动物肌肉组织中氨基甲酸酯类杀虫剂及其代谢物残留》一文中研究指出建立动物组织中氨基甲酸酯类杀虫剂及其代谢物(共16种)残留的高效液相色谱-串联质谱分析方法。样品经乙腈提取、浓缩、净化,液相色谱串联质谱测定,内标法定量。16种杀虫剂在1.0~100μg/L范围内线性关系良好(r>0.9959);方法定量限为0.5~2.5μg/kg;样品添加5.0、10.0、20μg/kg时,加标回收率为71.4%~105.5%;相对标准偏差为3.2%~13.7%。该方法具有简便快捷、灵敏度高的特点,适用于动物肌肉中氨基甲酸酯类杀虫剂及其代谢物残留量的检测。(本文来源于《食品科学》期刊2012年04期)
成四喜,李海屏,雷筱娱,谢伟胜[10](2011)在《全球氨基甲酸酯类杀虫剂专利分析》一文中研究指出从宏观分布、技术发展特点、技术生命周期特征3方面分析研究了全球氨基甲酸酯类杀虫剂新化合物、新工艺和新制剂发展态势,预测了其未来发展趋势。(本文来源于《农药》期刊2011年11期)
氨基甲酸酯杀虫剂论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
采用乙腈提取、固相萃取(SPE)富集浓缩技术结合自行研制开发的毛细管液相色谱(CLC)仪,同时分离测定了食品和水样中1种有机磷和3种氨基甲酸酯类杀虫剂残留。对影响SPE效率和CLC分离检测的各类因素进行了优化,包括固相萃取柱种类、样品pH、洗脱剂种类和体积、上样速率、盐效应、上样体积、检测波长、流动相种类和比例等。结果表明,4种杀虫剂在6 min内达到完全分离,检出限为0.35~1.20μg/kg,定量限为1.17~4.00μg/kg。使用该SPE-CLC法对西红柿、黄瓜、苹果样品和自来水、湖水水样进行加标回收测定,得到食品中加标回收率为72.41%~107.15%,相对标准偏差≤8.12%;水样中加标回收率为71.45%~109.25%,相对标准偏差≤9.28%。该法能够满足农药多残留分析要求。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
氨基甲酸酯杀虫剂论文参考文献
[1].刘刚.15种氨基甲酸酯类杀虫剂在我国的登记作物范围[J].农药市场信息.2019
[2].刘洁,鹿文慧,崔荣,孙西艳,李金花.固相萃取-毛细管液相色谱测定食品和水样中有机磷和氨基甲酸酯类杀虫剂残留[J].色谱.2018
[3].陈阳,姜兆林,李栋.血中氨基甲酸酯类杀虫剂固相萃取检测[J].广东化工.2017
[4].芮银.SBA-15介孔分子筛固定化乙酰胆碱酯酶及其对有机磷和氨基甲酸酯类农药杀虫剂含量的测定[D].上海应用技术大学.2017
[5].黄会,刘慧慧,王共明,韩典峰,张华威.氨基甲酸酯类杀虫剂的毒性、检测方法及其在水环境中残留研究进展[J].中国渔业质量与标准.2016
[6]..新西兰有机磷和氨基甲酸酯(OPC)类杀虫剂新标签标准将于7月起生效[J].农药市场信息.2016
[7].Manish,Raj,Pandey.利用牙鲆鳃细胞FG和斑马鱼胚胎对氨基甲酸酯类杀虫剂残杀威和西维因的细胞毒性、遗传毒性和致畸性的毒性评估研究[D].中国海洋大学.2013
[8].姜兆林,段梦圆,金倩辉,谷伟恩.四种氨基甲酸酯类杀虫剂分子印迹聚合物的合成及识别性能研究[J].中国刑警学院学报.2012
[9].邓龙,郭新东,何强,杨群华,沈玉栋.高效液相色谱-串联质谱法测定动物肌肉组织中氨基甲酸酯类杀虫剂及其代谢物残留[J].食品科学.2012
[10].成四喜,李海屏,雷筱娱,谢伟胜.全球氨基甲酸酯类杀虫剂专利分析[J].农药.2011