导电聚砜超滤膜的制备性能研究及应用

导电聚砜超滤膜的制备性能研究及应用

论文摘要

膜污染是水处理过程中不可避免的一个问题,这严重限制了膜的性能。因此,非常需要简单有效的膜污染监测方法,以评估在发生损坏或需要更换膜之前的污染情况。本文中,通过在聚砜(PSF)基质中混合导电聚苯胺(PANI)纳米纤维和羧基化多壁碳纳米管(MWCNT)来制备导电共混超滤(UF)膜,并应用于在线污垢监测系统中。首先,本次实验通过氧化还原法和快速混合法制备PANI纳米纤维,并通过扫描电镜(SEM)、透射电镜(TEM)、傅立叶变换红外光谱(FTIR)、紫外分光光度计(UV-vis)对PANI纳米纤维进行形貌和结构表征。然后,将制备好的PANI纳米纤维通过共混法和浸没相转化制备成PANI/PSF复合膜。通过SEM、水通量、接触角等测试手段分析PANI含量对膜性能的影响。结果显示,PANI/PSF复合膜的水通量、亲水性、机械强度等性能均优于原始PSF膜,并且导电性在一定程度有所提高,这为下一步研究打下了良好的基础。最后,通过控制PANI的含量,探究MWCNT对膜性能的影响。在该研究中,首次将MWCNT和PANI结合到聚合物基质中来增加基于PSF的超滤膜的电导率,部分地充当导电填料并且增加亲水性但也用于增加孔隙率。通过TEM、SEM和FTIR表征PANI和MWCNT以及所制备的膜,还评估了Zeta电位,拉伸强度,断裂伸长率,电导率,纯水通量和BSA截留率。混合膜表现出提高的电导率和水通量(196 L·m-2·h-1),并且具有比原始PSF膜更高的孔隙率和更大的孔径。此外,我们工作的另外新颖之处在于提供了一种可行的方法,利用线性扫描伏安法(LSV)来监测污染过程中超滤膜体系电阻的变化。连接到电化学工作站的自制错流膜池用于通过线性扫描伏安法测量电阻的变化以用来监测污染过程。探索渗透通量与体系电阻之间的关系和趋势,实现了污染程度的在线监测,为实际应用提供了理论基础。

论文目录

  • 摘要
  • ABSTRACT
  • 第一章 绪论
  •   1.1 选题的目的和意义
  •   1.2 超滤膜概述
  •     1.2.1 超滤膜材料
  •     1.2.2 超滤膜制备
  •   1.3 聚砜膜材料
  •     1.3.1 聚砜简介
  •     1.3.2 聚砜超滤膜存在的问题
  •     1.3.3 聚砜超滤膜亲水改性方法
  •   1.4 聚苯胺相关研究简述
  •     1.4.1 聚苯胺结构和特性
  •     1.4.2 聚苯胺制备方法概述
  •     1.4.3 聚苯胺在分离膜的应用
  •   1.5 碳纳米管相关研究简述
  •     1.5.1 碳纳米管简介
  •     1.5.2 碳纳米管在分离膜的应用
  •   1.6 膜污染
  •     1.6.1 膜污染简介
  •     1.6.2 膜污染监测
  •   1.7 本课题研究的主要内容
  • 第二章 PANI的制备及表征
  •   2.1 实验试剂与设备
  •   2.2 PANI纳米纤维的制备
  •   2.3 PANI纳米纤维的表征
  •     2.3.1 透射电子显微镜表征
  •     2.3.2 扫描电子显微镜表征
  •     2.3.3 傅立叶红外光谱表征
  •     2.3.4 紫外-可见吸收光谱表征
  •   2.4 结果与讨论
  •     2.4.1 PANI形貌分析
  •     2.4.2 PANI红外光谱分析
  •     2.4.3 PANI紫外光谱分析
  •   2.5 本章小结
  • 第三章 PANI/PSF超滤膜的制备及表征
  •   3.1 实验材料与设备
  •   3.2 PANI/PSF复合膜的制备
  •   3.3 PANI/PSF复合膜的表征
  •     3.3.1 形貌表征
  •     3.3.2 孔隙率和平均孔径测试
  •     3.3.3 水通量和BSA截留率测试
  •     3.3.4 水接触角测试
  •     3.3.5 机械性能测试
  •     3.3.6 导电性能测试
  •   3.4 结果与讨论
  •     3.4.1 形貌分析
  •     3.4.2 水通量和截留率分析
  •     3.4.3 孔隙率和平均孔径分析
  •     3.4.4 亲水性分析
  •     3.4.5 机械性能分析
  •     3.4.6 导电性能分析
  •   3.5 本章小结
  • 第四章 导电超滤膜的制备、表征及污染在线监测应用
  •   4.1 实验试剂与设备
  •   4.2 MWCNT/PANI/PSF复合膜的制备
  •   4.3 MWCNT/PANI/PSF复合膜的表征
  •     4.3.1 形貌表征
  •     4.3.2 孔隙率和平均孔径表征
  •     4.3.3 水通量和BSA截留率表征
  •     4.3.4 接触角表征
  •     4.3.5 机械性能表征
  •     4.3.6 Zeta电位表征
  •     4.3.7 导电性能表征
  •     4.3.8 膜污染监测表征
  •   4.4 结果与讨论
  •     4.4.1 PANI和MWCNT形貌分析
  •     4.4.2 形貌、孔隙和平均孔径分析
  •     4.4.3 机械强度分析
  •     4.4.4 亲水性分析
  •     4.4.5 通量和截留分析
  •     4.4.6 Zeta电位分析
  •     4.4.7 膜导电性分析
  •     4.4.8 膜污染在线监测应用
  •   4.5 本章小结
  • 第五章 结论
  • 参考文献
  • 发表论文和参加科研情况
  • 致谢
  • 文章来源

    类型: 硕士论文

    作者: 袁雪爽

    导师: 耿宏章,李春刚

    关键词: 聚砜,聚苯胺,多壁碳纳米管,导电超滤膜,线性扫描伏安法,污染监测

    来源: 天津工业大学

    年度: 2019

    分类: 工程科技Ⅰ辑

    专业: 无机化工,有机化工

    单位: 天津工业大学

    分类号: TQ051.893

    总页数: 72

    文件大小: 5023K

    下载量: 171

    相关论文文献

    • [1].ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes[J]. Journal of Energy Chemistry 2019(08)
    • [2].Thermal conductivity of PVDF/PANI-nanofiber composite membrane aligned in an electric field[J]. Chinese Journal of Chemical Engineering 2018(05)
    • [3].Thermal Characteristics of PVA-PANI-ZnS Nanocomposite Film Synthesized by Gamma Irradiation Method[J]. Chinese Physics Letters 2018(11)
    • [4].Synthesis and Enhanced Electrochemical Activity of Ag-Pt Bimetallic Nanoparticles Decorated MWCNTs/PANI Nanocomposites[J]. Journal of Wuhan University of Technology(Materials Science) 2018(05)
    • [5].Immobilization of PANI on Mesoporous Carbon:Preparation and Supercapacitor Performance[J]. Transactions of Nanjing University of Aeronautics and Astronautics 2018(04)
    • [6].A Self-Powered Breath Analyzer Based on PANI/PVDF Piezo-Gas-Sensing Arrays for Potential Diagnostics Application[J]. Nano-Micro Letters 2018(04)
    • [7].NiCo_2O_4 decorated PANI–CNTs composites as supercapacitive electrode materials[J]. Journal of Energy Chemistry 2017(01)
    • [8].Electrical Conductivity and pH Sensitivity of Ordered Porous Gel Acrylate Polymer Membrane with Nano-PANI Doping[J]. Journal of Harbin Institute of Technology 2017(02)
    • [9].接枝聚合法制备PANI/CeO_2-APTMS复合材料及其电化学性能[J]. 高分子材料科学与工程 2017(07)
    • [10].花状CuS/PANI复合材料的制备及其电磁屏蔽性能研究[J]. 现代化工 2017(11)
    • [11].MnFe_2O_4@PANI@Ag Heterogeneous Nanocatalyst for Degradation of Industrial Aqueous Organic Pollutants[J]. Journal of Materials Science & Technology 2016(02)
    • [12].PANI导电水凝胶的制备及其进展[J]. 高分子通报 2020(06)
    • [13].原位聚合法制备PANI/RGO导电复合材料的性能[J]. 工程塑料应用 2018(03)
    • [14].硅烷偶联剂预处理PANI对水性涂料性能的影响[J]. 精细化工 2017(11)
    • [15].Synthesis and supercapacitor characteristics of PANI/CNTs composites[J]. Chinese Science Bulletin 2010(11)
    • [16].Preparation of Surfactants Directed PANI/In_2O_3 Nanocomposite Thin Films and Its NH_3-Sensing Properties[J]. Journal of Electronic Science and Technology 2010(02)
    • [17].Preparation,Characterization and Comparative NH_3-sensing Characteristic Studies of PANI/inorganic Oxides Nanocomposite Thin Films[J]. Journal of Materials Science & Technology 2010(07)
    • [18].Chlorine gas sensors using hybrid organic semiconductors of PANI/ZnPcCl_(16)[J]. 半导体学报 2010(08)
    • [19].Investigation of Novel Short Fiber-like Polyaniline/Cerium Nitrate Composite[J]. Journal of Wuhan University of Technology(Materials Science) 2019(01)
    • [20].Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能[J]. 材料导报 2018(01)
    • [21].PANI/MoS_2复合材料的制备及其电化学性能研究[J]. 当代化工 2018(05)
    • [22].双脉冲电镀制备PbO_2-PANI复合电极的研究[J]. 化工新型材料 2018(07)
    • [23].Two-dimensional polyaniline nanosheets via liquid-phase exfoliation[J]. Chinese Physics B 2017(04)
    • [24].Preparation and Antibacterial Activity of Three-component NiFe_2O_4@PANI@Ag Nanocomposite[J]. Journal of Materials Science & Technology 2014(07)
    • [25].PMOV_2/PANI/TiO_2复合材料的制备及光催化性能[J]. 化工新型材料 2012(12)
    • [26].Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods[J]. Progress in Natural Science:Materials International 2012(04)
    • [27].PANI/Fe-杭锦2~#土催化剂对乙酸的光催化降解研究[J]. 内蒙古师范大学学报(自然科学汉文版) 2019(05)
    • [28].电场-抽滤法制备VACNTs/PANI复合膜及其热性能研究[J]. 广州化工 2018(15)
    • [29].Effect of CNTs and nano ZnO on physical and mechanical properties of polyaniline composites applicable in energy devices[J]. Progress in Natural Science:Materials International 2016(06)
    • [30].Ternary Fe_3O_4@PANI@Au nanocomposites as a magnetic catalyst for degradation of organic dyes[J]. Science China(Technological Sciences) 2017(05)

    标签:;  ;  ;  ;  ;  ;  

    导电聚砜超滤膜的制备性能研究及应用
    下载Doc文档

    猜你喜欢