论文摘要
Gorenstein模是相对同调代数中的一个非常重要的研究对象。g(x,y,l)-模[40]推广了g(x)-模[35]、强Gorenstein平坦模[15]和Gorenstein FP-内射模[23,30]等概念。本文主要研究强(x,y,l)-Gorenstein模(简记为sg(x,y,l)-模)及其应用,g(x,y,l)-分解维数以及,n-Sg(x,y,l)-模的同调性质,其中n是一个正整数。本文共分四章。第一章,给出一些预备知识及主要结果。第二章,我们引入Sg(x,y,l)-模的概念,其中x,y,l是R-Mod的加性满子范畴。这类模给出g(x,y,l)-模的一个新的刻画:在一定前提下,一个模是g(x,y,l)-模当且仅当它是某个sg(x,y,l)模的直和项。这类模还给出另外一个应用:左整体g(x,y,l)-分解维数等于右整体g(x,y,l)-分解维数,这里x,y,l是和x,y,l相关的加性满子范畴。第三章,我们证明了范畴x是范畴g(x,y,l)的生成子和余生成子。我们对任意模的g(x,y,l)-分解维数进行了刻画:设y⊥x和x⊥y,如果它的x-分解维数有限,那么它与其g(x,y,l)-分解维数相等。第四章,我们引入n-sg(x,y,l)-模的概念,其中x,y,l是R-Mod的加性满子范畴,n是一个正整数。这类模推广了Sg(x,y,l)-模、n-强Gorenstein投射模和内射模[10,43]等概念。在x(?)(?),x(?)l的前提下,我们给出n-Sg(x,y,l)-模的一些刻画,并且还给出n-Sg(x,y,l)与m-Sg(x,y,l)之间的一些关系。
论文目录
文章来源
类型: 博士论文
作者: 孔留贞
导师: 丁南庆
关键词: 分解维数,余生成子
来源: 南京大学
年度: 2019
分类: 基础科学
专业: 数学
单位: 南京大学
分类号: O153.3
DOI: 10.27235/d.cnki.gnjiu.2019.000146
总页数: 62
文件大小: 2773k
下载量: 1
相关论文文献
- [1].Exact solution of the two-mode quantum Rabi model[J]. Communications in Theoretical Physics 2020(06)
- [2].Darboux transformation and exact multisolitons for a matrix coupled dispersionless system[J]. Communications in Theoretical Physics 2020(07)
- [3].Costar Subcategories and Cotilting Subcategories with Respect to Cotorsion Triples[J]. Journal of Mathematical Research with Applications 2020(06)
- [4].Trial function method and exact solutions to the generalized nonlinear Schrdinger equation with time-dependent coefficient[J]. Chinese Physics B 2013(10)
- [5].Induced generalized exact boundary synchronizations for a coupled system of wave equations[J]. Applied Mathematics:A Journal of Chinese Universities 2020(01)
- [6].Kirchberg's conjecture in the system of Hilbert space factorable mapping spaces[J]. Science China(Mathematics) 2020(06)
- [7].Controllability of Singular Distributed Parameter Systems in the Sense of Mild Solution[J]. Journal of Systems Science & Complexity 2020(05)
- [8].Semi-exact Solutions of Konwent Potential[J]. Communications in Theoretical Physics 2019(02)
- [9].Cohomology Theories in Triangulated Categories[J]. Acta Mathematica Sinica 2016(11)
- [10].EXACT SOLUTIONS OF (2+1)-DIMENSIONAL NONLINEAR SCHR?DINGER EQUATION BASED ON MODIFIED EXTENDED TANH METHOD[J]. Annals of Applied Mathematics 2016(01)
- [11].New exact solutions of a (3+1)-dimensional Jimbo-Miwa system[J]. Chinese Physics B 2013(05)
- [12].Constructing exact solutions to discrete systems with the trial function method[J]. Applied Mathematics:A Journal of Chinese Universities(Series B) 2008(03)
- [13].Notes on micro-continua exhibiting quantum effects[J]. Applied Mathematics and Mechanics(English Edition) 2020(10)
- [14].V-Gorenstein Injective Modules Preenvelopes and Related Dimension[J]. Acta Mathematica Sinica 2017(02)
- [15].accurate,exact,correct和right[J]. 中学生天地(C版) 2011(09)
- [16].Half Exact Functors Associated with Cotorsion Pairs on Exact Categories[J]. Acta Mathematica Sinica 2019(08)
- [17].Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation[J]. Chinese Physics B 2018(04)
- [18].On dynamics of elastic rod based on exact Cosserat model[J]. Chinese Physics B 2009(01)
- [19].Further Results on Meromorphic Functions and Their nth Order Exact Differences with Three Shared Values[J]. Communications in Mathematical Research 2019(03)
- [20].The Fourth Power Mean of the General 2-Dimensional Kloostermann Sums Mod p[J]. Acta Mathematica Sinica 2017(06)
- [21].INVARIANT SUBSPACES AND GENERALIZED FUNCTIONAL SEPARABLE SOLUTIONS TO THE TWO-COMPONENT b-FAMILY SYSTEM[J]. Acta Mathematica Scientia(English Series) 2016(03)
- [22].Exactness of penalization for exact minimax penalty function method in nonconvex programming[J]. Applied Mathematics and Mechanics(English Edition) 2015(04)
- [23].Bifurcations of traveling wave solutions and exact solutions to generalized Zakharov equation and Ginzburg-Landau equation[J]. Applied Mathematics and Mechanics(English Edition) 2011(12)
- [24].Symmetries and exact solutions of discrete nonconservative systems[J]. Science China(Physics,Mechanics & Astronomy) 2010(09)
- [25].Application of diflerential constraint method to exact solution of second-grade fluid[J]. Applied Mathematics and Mechanics(English Edition) 2009(04)
- [26].New explicit and exact solutions of the Benney-Kawahara-Lin equation[J]. Chinese Physics B 2009(10)
- [27].Natural pedogenic pathway of iron oxides[J]. National Science Review 2014(01)
- [28].Exact solutions of the Spinless-Salpeter equation under Kink-Like potential[J]. Chinese Physics C 2013(12)
- [29].Solutions to a Novel Casimir Equation for the Ito System[J]. Communications in Theoretical Physics 2011(11)
- [30].Lie symmetries and exact solutions for a short-wave model[J]. Chinese Physics B 2013(04)