论文摘要
针对目前高填方渠道渗漏检测方法通常单一、数据获取易受环境干扰、渗漏等级难以分类等问题,研究了基于SBKF-PNN融合的高填方渠道渗漏实时监测模型.首先建立基于土质高填方渠段的实验模型,设计了基于ZigBee和GPRS的渗漏信息无线传感网络,将高填方渠道的温度信息、湿度信息、GPS信息和渗流信息进行可移动获取;结合高填方渠道渗漏规律,分析传感器多源数据变化的规律及其关联度,定义了高填方渠道渗漏的等级模式,筛选了温度场、电势场和电磁场等多传感器信息作为渗漏监测量;然后应用贯序式块卡尔曼滤波(Sequential Block Kalman Filter,SBKF)方法对多传感器数据块进行处理,同时采用概率神经网络(Probabilistic Neural Network,PNN)算法进行渠道渗漏的等级分类;最后用大量的实测数据对SBKF-PNN模型进行训练,得到高填方渠道渗漏监测的反演模型,并将该反演模型应用到实际的高填方渗漏监测中.结果表明,基于SBKF-PNN的渗漏监测模型可实现多传感数据块的实时滤波,有效融合多种环境量的突变特征,能较准确地实现高填方渠道渗漏等级分类.
论文目录
文章来源
类型: 期刊论文
作者: 刘明堂,王丽,秦泽宁,司孝平,刘雪梅
关键词: 高填方渠道,渗漏监测,无线传感网,贯序块卡尔曼滤波,分类
来源: 应用基础与工程科学学报 2019年02期
年度: 2019
分类: 工程科技Ⅱ辑
专业: 水利水电工程
单位: 华北水利水电大学信息工程学院
基金: 河南省高等学校重点科研项目计划(15A510003),河南省高等学校重点科研项目计划(14B170012),河南省科技攻关计划(172102210050),水利部黄河泥沙重点实验室开放课题基金(2017001),国家科技重大专项课题(2014ZX03005001)
分类号: TV698.12
DOI: 10.16058/j.issn.1005-0930.2019.02.005
页码: 284-294
总页数: 11
文件大小: 1531K
下载量: 97
相关论文文献
标签:高填方渠道论文; 渗漏监测论文; 无线传感网论文; 贯序块卡尔曼滤波论文; 分类论文;