论文的数学模型怎么建立

论文的数学模型怎么建立

问:数学建模怎么建立模型?
  1. 答:1、模型准备
    首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
    2、模型假设
    根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的磨衫歼语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
    3、模型构成
    根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的塌卖等式关系或其它数学结构。
    这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
    4、模型求解
    可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来瞎冲,因此编程和熟悉数学软件包能力便举足轻重。
    5、模型分析
    对模型解答进行数学上的分析。能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论哪种情况都需进行误差分析,数据稳定性分析。
    6、模型检验
    把数学上分析的结果翻译回到现实问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性。
    7、模型应用
    取决于问题的性质和建模的目的。
  2. 答:建立模型的方法:机理分析法和测试分析法。
    建立模型的步骤:模型的假设,模型的建立,模型的分析与求解,模型的检验与修改,模型的推广,模型优缺点。
    建立模型的常用工具:matlab,辅助工具:word,Excel,visio,mathtype。
    建立模型有关的数学知识:线性规划,回归方程,常微分方程,概率论与数理统计。
    MATLAB的使用:在执行命令窗口输入所需的公式或者方程,输入完成后,回车即可得到所需结果。
    建模应用
    数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相模尘誉关的。数学的特点不仅在于概念的抽象性、逻辑的严密性、结论的明确性和体系的完整性,而且在于它应用的广泛性。
    自从20世纪以来,随着科学技术的旦段迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。
    经济发展的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分兄弯和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
问:建立数学模型的一般步骤
  1. 答:建立数学模型的一般步骤图形表示如下:原型分析→确定模型类别→建立模型→检验
    第一,掌握和分析客观原型的各种关系,数量形式。数学模型是从现实原型中抽象出来的,如果我们不能准确全面地掌握客观原型的数量关系,内部变化规律等,就会无法构造出正确的数学模型。因此我们要求作为构造数学模型的第一步,要尽量地分析和掌握原型的各种数据激迅和各种关系。
    第二,确定所研究原型的本质属性,从而抓住问芦渗题的本质。从构建数学模型的意义上来分析,要清楚准备建立的数学模型的类型,只有这样才能为建构数学模型做好准备工作。这其中最重要的是认清变量关系以及事物各元素之间的关系。
    第三,建立数学模型。这一阶段要求建立起在数学概念,语言表述,符号等基础上的数学模型。此时,客观原型已经被数学的抽象形式明确地表现出来,数学模型的确定性,随机性,模糊性已经十分清楚,进而应当运用的数学工具及计算用的表达式都应当清楚。
    第四,对数学模型进行运演和检验。这一阶段要求把数学模型进行逻辑推理,理论计算的结果返回到实践中去检验,如果其结果不符合客观实践就要被修正,甚至陪铅脊重新构造数学模型。
问:如何准备数学建模呢 需要做那些准备呢
  1. 答:如何准备数学建模,需要做这些准备。第一,找一本有关建模的基础教程,第二,学会一门数学软件的使用,三,掌握科技论文旋涡状的写作方法。
    数学模型(Mathematical Model)是一种模拟,是悄腔用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画启虚衫,数学模型或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,数学模型的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。
    想要了解数学建模相关学习的更多内誉衫容,可以了解一下广州中教在线教育科技有限公司(以下简称:中教在线)。中教在线的课程从零基础开始学习,从简单入门到后期成品出图老师带着你一步一步走过来,毕业后还有就业指导课程,助你解决面试难题,助教老师24小时在线答疑。
  2. 答:作为大一、大二学生,第一,找一本有关建模的基础教程,如清华大学姜启源的《数学模型》(第三版)及配套习题和参考解答,系统地看完整个内容,并适当地选择一些复杂的习题自己做一做。第二,学会一门数学软件的使用,如matlab、mathematica、lingo、spss等。上面列出的软件中,必须熟练掌握一门,其它的也要进行了解。再就是一般Office软件如word、excel也要熟练掌握。特别要注意,word中数学公式的编排。平时多用,到竞赛时就不会手忙脚乱了。第三,掌握科技论文旋涡状的写作方法。到网上下载一些以前全国或全美大学生数学建模竞赛的获奖论文,学习别人建模写作方法。还有就是,平时多注意一些社会热点问题,看看能否试着用已尝到的数学建模方法去解陵陪决。
    数学建模知识的平时积累,对裤竖一个想胡汪大要参加数学建模竞赛的大学生是非常重要的。你在自我学习的过程中,还就多和身边的同学交流心得,合作地做几个问题,这也有助于自己建模水平的提高,并锻炼自己的协作工作能力、合作精神。
论文的数学模型怎么建立
下载Doc文档

猜你喜欢