弹性图匹配论文_吴杨

导读:本文包含了弹性图匹配论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:弹性,小波,滤波器,特征,形状,掌纹,上下文。

弹性图匹配论文文献综述

吴杨[1](2018)在《基于弹性图匹配法的特定人物检测及软硬件实现》一文中研究指出随着生物识别技术的快速发展,人脸识别技术越来越多地被应用在人类生活中,如安防系统、寻人系统、门禁系统等,如何从图像中通过人脸来准确、快速地检测到特定人物有重要的实际应用价值。本文首先对人脸检测与识别的现状进行分析,在此基础上,给出了基于Gabor特征的弹性图匹配法的人脸识别方法,设计了特定人物检测的Matlab软件程序和硬件结构。本文研究成果可分为两部分:(1)论文首先对特定人物检测算法及其Matlab实现进行研究。为了去除与肤色相近的背景颜色的干扰,给出了基于YCgCr和YCgCb颜色空间的人脸检测粗定位的方法。其次,改进了基于Gabor特征的人脸识别算法,通过试验确定了特征点的最优权值参数。构建了特定人物检测的图像库,编写 Mtal ab程序实现了对特定人物的检测,检测结果表明,该算法特定人物的识别率可达到96%。(2)在算法软件实现的基础上,论文设计了特定人物检测的硬件结构,整个硬件系统包括肤色粗定位模块、人脸检测识别模块以及存储等模块等。编写了各个模块的Verilog HDL代码,并用Modelsim做了仿真,最后将整个系统综合到ALTERA的STRATIX V器件中,并在FPGA板上进行验证,结果表明论文设计硬件结构是正确的。(本文来源于《西安理工大学》期刊2018-06-30)

连玮[2](2012)在《基于图匹配的旋转不变弹性点匹配算法》一文中研究指出针对旋转不变的弹性点匹配问题,提出一种基于图匹配的算法。对两点集分别构造边集合,然后定向的形状上下文距离和边长度的差别被用于度量两点集的边之间的相似性。基于边的相似性,点对应关系通过求解一个图匹配问题而恢复。实验结果表明该算法可以获得很好的配准结果并且鲁棒、高效。(本文来源于《计算机应用》期刊2012年09期)

韩军[3](2012)在《基于弹性束图匹配与隐马尔科夫模型的人脸识别算法研究》一文中研究指出随着现代科学技术的发展,生物特征识别技术在近些年的研究中逐渐成为一个热点,随之产生的众多的研究成果和产品,被广泛应用在各类信息安全、金融交易、社会安防、出入境管理、行政、交通、医疗等领域,在社会生活的各个方面都起到了显着地作用。到目前为止,生物特征识别技术中较为成熟的技术有人脸、虹膜、指纹、掌纹、人耳、手形等识别方法,其中人脸识别因其所具有的非接触式、简单快捷等优势,成为目前生物特征识别领域中研究的主流对象,但是由于人脸图像易受光照、角度、年龄、环境变化的影响,且人脸图像之间又具有高度的相似性,因此如何快速准确的进行人脸识别,就成了研究人脸识别技术时必须要考虑和解决的问题。本文即针对上述问题,对人脸识别技术中较为常用的弹性束图匹配方法和隐马尔科夫模型方法进行了较为深入的研究,主要的工作和成果有以下几个方面:1.全面概述了目前人脸识别领域中使用较为广泛的几种识别方法,对其所采用的理论依据、具体实现方法进行了分析比较,总结和归纳了这些方法在处理人脸识别问题时分别所具有的优势和缺陷。单一方法在处理人脸识别问题时总是具有一定的局限性,提取的单一的人脸特征也易受到环境因素的影响,因此多种方法或特征的融合,可以避免使用单一方法的缺陷,扩大算法的适用范围,提高抗干扰性。2.针对基于弹性束图匹配的正面人脸识别方法中不同频率的特征值对于人脸图像识别率影响的差异性问题,提出了一种利用权值分配对小波系数进行优化的方法,由于变换后得到的小波系数对于人脸图像识别率的影响大小不一,因此对其进行分类并赋予相应的权值,使得可以提高识别率的小波系数所占的权重更大,从而显着增强不同人脸弹性图结构之间的差异性,通过算法验证系统的检验,改进后的方法可以有效提高识别率。3.通过对基于隐马尔科夫模型的人脸识别系统的研究和分析,采用奇异值作为特征向量构建隐马尔科夫模型进行人脸识别,由于奇异值向量具有稳定性、位移不变性、转置不变性、与对应图像亮度成比例变化等特性,因此对于人脸图像易受到的光照、角度、环境等因素的影响具有一定的鲁棒性,相对于直接采用图像灰度值和二维离散余弦变换值所做的识别结果,采用奇异值分解的隐马尔科夫模型人脸识别方法可以得到更高的识别率。(本文来源于《兰州理工大学》期刊2012-04-18)

俞燕,李正明[4](2011)在《基于特征的弹性图匹配人脸识别算法改进》一文中研究指出针对传统人脸识别弹性图匹配算法空间复杂度高、实时性较差的问题,提出一种弹性图匹配改进算法,将人脸图片特征点经Gabor小波预处理后,结合主成分分析(PCA)和Fisher线性判别方法(FLD)对生成的特征矢量进行处理,降低维数,减少计算量,同时在不降低识别率的前提下,提高识别速度。与传统的PCA算法、FLD算法、EGM算法进行仿真比较,证明该改进算法识别率高、实时性好。(本文来源于《计算机工程》期刊2011年05期)

武京伟,黄春庆[5](2009)在《一种基于改进弹性束图匹配的人脸识别》一文中研究指出针对基于弹性束图匹配(EBGM)算法的正面人脸识别,提出了一种新的优化理论。在EBGM算法中,在抽取脸部图像特征之前,需要首先预设好Gabor小波的波长。为了对EBGM算法进行优化,提出了采用遗传算法(GA)对Gabor小波波长进行最佳选择。为了对改进的算法进行评估,实验对300个FERET人脸数据库类进行了测试。在训练阶段,每个类中只取出一幅图像用来训练。经过优化后的EBGM算法匹配运算大幅度减少,识别率大约为90%,运行速度提高至原EBGM算法的1.5倍。(本文来源于《工业控制计算机》期刊2009年09期)

刘晓东[6](2008)在《基于弹性图匹配法的人脸识别算法研究》一文中研究指出人脸识别作为一种重要的生物特征识别技术,涉及到模式识别、计算机视觉、图像处理以及认知科学等多个前沿学科知识,在公共安全以及信息安全领域有广泛的应用。当前主流的人脸识别方法分为两大类:基于统计特征的算法和基于几何特征的算法。前者将人脸区域作为整体输入到识别系统中,以寻求最佳匹配。基于子空间的识别方法是这类算法的代表,该算法的思想是将人脸图像进行降维处理,投射到低维空间进行识别。而基于几何特征的算法则是提取人脸特征点信息,通过匹配特征信息来进行识别,代表方法有弹性图匹配法(EBGM),该算法利用人脸的基准特征点构造拓扑图,使其能够符合人脸的几何特征,进而获取人脸关键点的特征值进行匹配。本文主要对弹性图匹配法(EBGM)进行了深入研究,针对该算法中的不足之处,提出自己的方法,纵观全文,主要有以下内容:1、综述人脸识别技术的历史和现状,详细总结了当前主流的人脸识别算法,并逐个分析了这些算法的优缺点。2、详细地描述了EBGM算法思想,介绍了Gabor滤波器的特性及其在EBGM算法中的应用;阐述了特征点的概念、特征点的定位方法、人脸束图的提取方法以及如何提取以及比较人脸图。3、通过分析EBGM算法中的特征点定位方法,针对精确估算特征点位置时所采用方法的不足,提出了平均定位法:当选取最佳匹配点时,不是采用模板图中最优的估算结果,而是选取所有模板图估算结果的平均值。4、EBGM算法在计算人脸特征点的相似度时,认为每个Gabor小波系数对结果的影响是相同的,从而给予所有系数同等权重,但实验测试表明情况并非如此。本文充分挖掘人脸频率分布的统计特性,通过对不同特征点在频域分布特征的提取,提出一种对Gabor小波系数进行分类并赋予其不同权重的优化方法。实验测试证明,该算法能有效的提高识别率。(本文来源于《上海交通大学》期刊2008-12-01)

张海龙[7](2008)在《人脸识别的弹性束图匹配算法的研究》一文中研究指出人脸识别在基于生物特征识别技术的身份认证中是最主要的方法之一。基于人脸识别的自动身份认证具有重要的理论意义和应用价值,对人脸自动识别方法的研究已成为当前模式识别和人工智能领域的一个研究热点。在本文的人脸识别系统中,人脸被表示成一系列的特征点,每个特征点都被描述为一个由40个复Gabor滤波器组与该点响应的结果,称为Jet。这样一个Jet就描述了该特征点邻域的局部灰度信息,滤波器集采用了5个不同的频率和8个不同的方向。在训练集的图像中,用手工标注相关特征点的坐标并求取Jets;对于样本人脸图像,对应的特征点被自动搜索出。特征点粗略定位由训练集人脸的结构作先验知识,然后利用弹性束图进行精确定位。本文深入研究了利用二维Gabor小波变换进行人脸识别的理论方法和技术,论文的主要工作如下:1、本文对当前常用的人脸识别理论方法做了扼要的概括总结,对当前人脸识别技术的研究现状、存在的问题和技术发展进行了论述。2、讨论了人脸图像的预处理。人脸图像的预处理就是将由图像采集设备采集到的人脸图像调整成规范化的图像。3、研究了二维Gabor小波变换及其在识别应用中的响应特性。二维Gabor小波变换是通过计算一组二维Gabor滤波器与图像上给定位置附近区域像素灰度值的卷积来实现的。4、分析了人脸识别的特征点定位以及弹性束图匹配的基本过程,对其中的相似度以及匹配函数进行了分析。(本文来源于《东北大学》期刊2008-01-20)

杨震群[8](2007)在《基于局部兴趣点和弹性图匹配的掌纹识别技术研究》一文中研究指出随着科学与技术的迅猛发展,传统的基于标识物品或者标识知识的身份识别技术已不能满足复杂的实时识别需求,人体生物特征识别技术由于具有(1)用户随身携带,(2)不易被窃取,(3)不易被伪造等特点,近年来得到了越来越广泛的研究和应用。掌纹作为人体生物特征中的一种性能优越的特征,具有以下优点:容易获取,囊括的信息量丰富,适于分类,主特征明显、稳定。掌纹识别系统友好、方便、快速、有效,容易实现低成本和大范围的使用。因此,掌纹识别技术在最近的十多年时间里得到了国内外各研究机构和学者的重视。掌纹图像特征丰富,其中包含手掌的长、宽和面积等参数的几何形状特征,叁条主要屈肌纹的特征,皱纹特征,叁角状带和脊线等细节特征。基于这些特征,产生了许多优秀的识别算法。由于受掌纹大面积柔性皮肤的影响,对同一采样者不同时刻的掌纹采样会出现非线性的形变,这给基于局部特征的匹配方法(如基于点,或者线特征的方法)造成了一定困难。相对于局部特征的方法来说,全局统计特征的方法很少受非线性形变的影响;然而,全局统计方法在特征提取阶段即丢失了丰富的局部细节特征,直接影响特征的代表性,使很多具有相似全局特性的掌纹很难被区分开。因此,寻找一种能够同时描述图像全局和局部代表性特征的方法成为近年来掌纹识别研究的一个重要发展趋势。本文在广泛研究和总结掌纹识别技术的相关知识、关键技术的基础上,主要进行了以下几个方面的研究工作:(1)分析了当前掌纹特征提取方法的优缺点,提出使用局部兴趣点(LocalInteresting Points,简称LIPs)进行特征提取和描述的新方法。该方法将DoG(Difference of Gaussian)检测方法与SIFT(Scale Invariant FeatureTransform)描述方法相结合用于提取、表达掌纹特征,能完整并有效地提取掌纹的局部兼全局代表性特征,且提取到的特征具有稳定、互异、简洁和鲁棒性好等优点。(2)根据掌纹图像的变形特点,对传统的LIPs点匹配方法进行了改进,有效降低了算法时间复杂度。(3)通过分析掌纹的非线性形变特点,提出新的基于弹性模型的匹配和识别方法。在特征匹配阶段通过弹性模型的自适应能力减小非线性形变的影响,提高了匹配的准确率。(4)使用分层匹配的思想构建决策树,对算法的决策过程和执行时间均进行了优化,并提高了识别精度。随着信息技术推动的新产业革命的兴起,人们在网络社会生存和生活都离不开身份识别与认证,生物特征识别技术是逐渐为人们公认的一种最安全的身份认证技术。近几年来,全球的生物特征识别技术已从研究阶段转向应用阶段,对该技术的研究和应用正进行得如火如荼,前景十分广阔。目前,常用的人体生物特征识别技术有虹膜识别、指纹识别、脸形识别、手形识别等,但没有一种技术在各项指标上全面优于其它技术,所以不同的应用场合需要采用不同的技术。掌纹识别技术作为一种较新的人体生物特征识别技术,是目前的研究热点。本文从多种常用人体生物特征识别技术的介绍开始,广泛研究了掌纹识别技术的相关问题和技术路线,重点概括了掌纹识别技术中的图像采集技术和图像预处理技术、特征提取和匹配技术,并对各种技术进行了比较分析,指出了未来的研究方向。(本文来源于《云南师范大学》期刊2007-05-01)

王亚利,周又玲[9](2004)在《基于弹性图匹配的静态手势识别》一文中研究指出手势识别已成为人机交互技术的关键之一。本文提出了基于弹性图匹配的静态手势识别算法。弹性图匹配的关键是Gabor函数参数的选择,本文通过分析Gabor函数特性,恰当地选择了Gabor函数的参数,并考虑手势的平移、旋转和大小,对1到9的数字手势进行了识别实验,结果表明本算法是可行的。(本文来源于《现代计算机(专业版)》期刊2004年12期)

薛理立,艾海舟[10](2003)在《基于弹性图匹配的实时视频流人脸识别》一文中研究指出1 引言人脸识别作为模式识别的一个分支,近年来再次成为研究的热点,各种方法层出不穷。其中弹性图匹配算法较好地利用了局部灰度特征信息和形状拓扑结构特征信息,具有较高的鲁棒性而广受关注。为了增强系统的鲁棒性,提高速度我们在传统的弹性图匹配的基础上进行了改进,提出了一个增强的弹性图匹配算法。(本文来源于《计算机科学》期刊2003年11期)

弹性图匹配论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

针对旋转不变的弹性点匹配问题,提出一种基于图匹配的算法。对两点集分别构造边集合,然后定向的形状上下文距离和边长度的差别被用于度量两点集的边之间的相似性。基于边的相似性,点对应关系通过求解一个图匹配问题而恢复。实验结果表明该算法可以获得很好的配准结果并且鲁棒、高效。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

弹性图匹配论文参考文献

[1].吴杨.基于弹性图匹配法的特定人物检测及软硬件实现[D].西安理工大学.2018

[2].连玮.基于图匹配的旋转不变弹性点匹配算法[J].计算机应用.2012

[3].韩军.基于弹性束图匹配与隐马尔科夫模型的人脸识别算法研究[D].兰州理工大学.2012

[4].俞燕,李正明.基于特征的弹性图匹配人脸识别算法改进[J].计算机工程.2011

[5].武京伟,黄春庆.一种基于改进弹性束图匹配的人脸识别[J].工业控制计算机.2009

[6].刘晓东.基于弹性图匹配法的人脸识别算法研究[D].上海交通大学.2008

[7].张海龙.人脸识别的弹性束图匹配算法的研究[D].东北大学.2008

[8].杨震群.基于局部兴趣点和弹性图匹配的掌纹识别技术研究[D].云南师范大学.2007

[9].王亚利,周又玲.基于弹性图匹配的静态手势识别[J].现代计算机(专业版).2004

[10].薛理立,艾海舟.基于弹性图匹配的实时视频流人脸识别[J].计算机科学.2003

论文知识图

一2人脸弹性图匹配方法弹性图匹配示意图一12弹性图匹配方法中人脸的弹性...人脸图像的弹性图匹配Fig.5.lE...人脸识别中常用的特征提取算法图中的...人脸弹性图匹配方法

标签:;  ;  ;  ;  ;  ;  ;  

弹性图匹配论文_吴杨
下载Doc文档

猜你喜欢