具有无穷平衡点的分数阶新混沌系统的积分滑模同步

具有无穷平衡点的分数阶新混沌系统的积分滑模同步

论文摘要

针对一类具有无穷平衡点的分数阶混沌系统,提出了一种新的分数阶滑模同步控制方法。在分数阶微积分的基础上,引入了一种新的非奇异分数阶终端滑模面,并利用分数阶Lyapunov稳定性定理,证明了在非奇异分数阶终端滑模面上误差系统能够在有限时间内稳定到平衡点;并通过设计合适的自适应控制律,得到同步误差轨迹能到达滑模面。数值算例表明了该方法的有效性。

论文目录

  • 1 滑模控制器设计
  •   1.1 整数阶混沌系统的滑模控制器设计
  •   1.2 分数阶混沌系统的滑模控制器设计
  • 2 数值仿真
  • 3 结论
  • 文章来源

    类型: 期刊论文

    作者: 朱军辉

    关键词: 分数阶,混沌系统,积分滑模,同步

    来源: 科学技术与工程 2019年18期

    年度: 2019

    分类: 工程科技Ⅱ辑,基础科学

    专业: 数学,物理学

    单位: 郑州航空工业管理学院理学院

    基金: 国家自然科学青年基金(NSFC11501525),河南省高校重点科研项目(17A110034,16B110014)资助

    分类号: O415.5;O231

    页码: 15-19

    总页数: 5

    文件大小: 241K

    下载量: 64

    相关论文文献

    • [1].单摆多混沌分数阶系统的指定时刻同步[J]. 周口师范学院学报 2020(02)
    • [2].一类分数阶系统的有限时间混沌同步[J]. 轻工学报 2017(04)
    • [3].一类分数阶复混沌系统的异构组合同步[J]. 天津职业技术师范大学学报 2019(03)
    • [4].基于积极控制的两个不同分数阶混沌系统的反同步[J]. 玉溪师范学院学报 2018(04)
    • [5].基于对角占优准则的分数阶系统同步控制[J]. 科技展望 2014(13)
    • [6].一种线性分数阶系统稳定性的频域判别准则[J]. 自动化学报 2011(11)
    • [7].基于分数阶滑模控制器的不确定分数阶混沌系统同步[J]. 应用数学学报 2018(06)
    • [8].基于调制函数法的分数阶系统参数辨识[J]. 科学技术创新 2018(33)
    • [9].一类新型不确定分数阶混沌系统的滑模同步[J]. 安徽大学学报(自然科学版) 2019(02)
    • [10].分数阶控制系统的稳定性理论研究[J]. 仪器仪表用户 2018(05)
    • [11].两类分数阶系统的观测器同步[J]. 吉林大学学报(理学版) 2017(01)
    • [12].广义分数阶混沌系统的鲁棒同步研究[J]. 青岛大学学报(工程技术版) 2018(02)
    • [13].时滞分数阶混沌系统的完全同步[J]. 计算机产品与流通 2018(07)
    • [14].一类分数阶不确定重复控制系统的稳定性分析[J]. 厦门理工学院学报 2018(05)
    • [15].具有控制约束的分数阶混沌系统柔性同步控制[J]. 控制与决策 2019(06)
    • [16].一类不确定分数阶混沌系统的参数辨识[J]. 数学的实践与认识 2018(08)
    • [17].分数阶不确定四翼混沌系统的自适应滑模同步[J]. 华中师范大学学报(自然科学版) 2018(02)
    • [18].一个5D超混沌分数阶系统的自适应控制与同步[J]. 合肥学院学报(自然科学版) 2015(04)
    • [19].基于增强响应灵敏度法的分数阶系统参数识别[J]. 华南理工大学学报(自然科学版) 2020(04)
    • [20].一类分数阶捕食者-食饵模型的动力学分析[J]. 甘肃高师学报 2019(05)
    • [21].含有有色噪声的非线性分数阶系统自适应扩展卡尔曼滤波器[J]. 信息与控制 2019(05)
    • [22].分数阶多涡卷混沌系统滑模同步的两种控制方案[J]. 数学的实践与认识 2017(24)
    • [23].基于分数阶最大相关熵算法的混沌时间序列预测[J]. 物理学报 2018(01)
    • [24].城市轨道交通列车分数阶控制算法研究[J]. 燕山大学学报 2018(04)
    • [25].成比例分数阶系统的仿真研究[J]. 系统仿真学报 2008(15)
    • [26].分数阶退化时滞微分系统的稳定性问题[J]. 工程数学学报 2018(01)
    • [27].双重不确定分数阶混沌系统的鲁棒自适应同步控制算法研究[J]. 计算机应用与软件 2019(06)
    • [28].一类分数阶阻尼系统的可控性[J]. 贵州大学学报(自然科学版) 2019(04)
    • [29].具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析[J]. 应用数学学报 2018(01)
    • [30].基于三次非线性忆阻器的分数阶蔡氏电路稳定性分析[J]. 通讯世界 2018(03)

    标签:;  ;  ;  ;  

    具有无穷平衡点的分数阶新混沌系统的积分滑模同步
    下载Doc文档

    猜你喜欢